Project description:Chronic stimulation of innate immune pathways by microbial agents or damaged tissue is known to promote inflammation-driven tumorigenesis by unclarified mechanisms1-3. Here we demonstrate that mutagenic 7,12-dimethylbenz(a)anthracene (DMBA), etoposide or cisplatin induces nuclear DNA leakage into the cytosol to intrinsically activate STING (Stimulator of Interferon Genes) dependent cytokine production. Inflammatory cytokine levels were subsequently augmented in a STING-dependent extrinsic manner by infiltrating phagocytes purging dying cells. Consequently, STING-/- mice, or wild type mice adoptively transferred with STING-/- bone marrow, were almost completely resistant to DMBA-induced skin carcinogenesis compared to their wild type counterparts. Our data emphasizes, for the first time, a role for STING in the induction of cancer, sheds significant insight into the causes of inflammation-driven carcinogenesis, and may provide therapeutic strategies to help prevent malignant disease Total RNA obtained from DMBA or acetone treated wild type (WT) or STING deficient (SKO) mouse skin or skin tumor was examined for gene expression.
Project description:Chronic stimulation of innate immune pathways by microbial agents or damaged tissue is known to promote inflammation-driven tumorigenesis by unclarified mechanisms1-3. Here we demonstrate that mutagenic 7,12-dimethylbenz(a)anthracene (DMBA), etoposide or cisplatin induces nuclear DNA leakage into the cytosol to intrinsically activate STING (Stimulator of Interferon Genes) dependent cytokine production. Inflammatory cytokine levels were subsequently augmented in a STING-dependent extrinsic manner by infiltrating phagocytes purging dying cells. Consequently, STING-/- mice, or wild type mice adoptively transferred with STING-/- bone marrow, were almost completely resistant to DMBA-induced skin carcinogenesis compared to their wild type counterparts. Our data emphasizes, for the first time, a role for STING in the induction of cancer, sheds significant insight into the causes of inflammation-driven carcinogenesis, and may provide therapeutic strategies to help prevent malignant disease Total RNA obtained from wild type murine embryonic fibroblasts (WT MEFs), STING deficient MEFs (SKO), Trex1 deficient MEFs (TKO), and both STING and Trex1 deficient MEFs (STKO) treated with DMBA and examined cytokine production by these cells.
Project description:Inflammatory diseases such as Aicardi-Goutieres Syndrome (AGS) and severe systemic lupus erythematosus (SLE) are generally lethal disorders that have been traced to defects in the exonuclease Trex1 (DNAseIII). Mice lacking Trex1 similarly die at an early age through comparable symptoms, including inflammatory myocarditis, through chronic activation of the STING (stimulator of interferon genes) pathway. Here we demonstrate that phagocytes rather than myocytes are predominantly responsible for causing inflammation, an outcome that could be alleviated following adoptive transfer of normal bone marrow into Trex1-/- mice. Trex1-/- macrophages did not exhibit significant augmented ability to produce pro-inflammatory cytokines compared to normal macrophages following exposure to STING-dependent activators, but rather appeared chronically stimulated by genomic DNA. These results shed molecular insight into inflammation and provide concepts for the design of new therapies. Total RNA obtained from wild type (WT), Trex1 deficient (TKO), STING deficient (SKO), or Trex1 and STING double deficient (STKO) mouse Heart
Project description:Inflammatory diseases such as Aicardi-Goutieres Syndrome (AGS) and severe systemic lupus erythematosus (SLE) are generally lethal disorders that have been traced to defects in the exonuclease Trex1 (DNAseIII). Mice lacking Trex1 similarly die at an early age through comparable symptoms, including inflammatory myocarditis, through chronic activation of the STING (stimulator of interferon genes) pathway. Here we demonstrate that phagocytes rather than myocytes are predominantly responsible for causing inflammation, an outcome that could be alleviated following adoptive transfer of normal bone marrow into Trex1-/- mice. Trex1-/- macrophages did not exhibit significant augmented ability to produce pro-inflammatory cytokines compared to normal macrophages following exposure to STING-dependent activators, but rather appeared chronically stimulated by genomic DNA. These results shed molecular insight into inflammation and provide concepts for the design of new therapies. Total RNA obtained from wild type murine embryonic fibroblasts (WT MEFs), Trex1 deficient MEFs (TKO) or STING and Trex1 double deficient MEFs (STKO) transfected with or without double strand DNA 90 (ISD) and examined cytokine production by these cells.
Project description:Germline polymorphisms influence gene expression networks in normal mammalian tissues. Analysis of this genetic architecture can identify single genes and whole pathways that influence to complex traits including inflammation and cancer susceptibility. Changes in the genetic architecture during the development of benign and malignant tumours have not been investigated. Here, we document major changes in germline control of gene expression during skin tumour development as a consequence of cell selection, somatic genetic events, and changes in tumour microenvironment. Immune response genes such as Interleukin 18 and Granzyme E are under germline control in tumours but not in normal skin. Gene expression networks linked to tumour susceptibility and hair follicle stem cell markers in normal skin undergo significant reorganization during tumour progression. Our data highlight opposing roles of Interleukin-1 signaling networks in tumour susceptibility and tumour progression and have implications for the development of chemopreventive strategies to reduce cancer incidence. Skin tumors were induced on dorsal back skin from a Mus spretus / Mus musculus backcross ([SPRET/Ei X FVB/N] X FVB/N) mice by treatment of dorsal back skin with dimethyl benzanthracene (DMBA) and tetradecanoyl-phorbol acetate (TPA). This treatment induced multiple benign papillomas as well as malignant squamous cell carcinomas (SCC) and spindle cell carcinomas. Gene expression analysis was performed on mRNA extracted from 68 papillomas: two papillomas from each of 31 FVBBX mice and a single papilloma from six additional FVBBX mice. Papillomas were harvested when mice were sacrificed due to presence of a carcinoma or termination of the experiment.
Project description:This SuperSeries is composed of the following subset Series: GSE12248: Genetic architecture of murine skin inflammation and tumor susceptibility GSE21247: Network Analysis of Skin Tumor Progression Identifies a Rewired Genetic Architecture Affecting Inflammation and Tumor Susceptibility (carcinomas) GSE21263: Network Analysis of Skin Tumor Progression Identifies a Rewired Genetic Architecture Affecting Inflammation and Tumor Susceptibility (papillomas) GSE26273: Network Analysis of Skin Tumor Progression Identifies a Rewired Genetic Architecture Affecting Inflammation and Tumor Susceptibility (aCGH) Refer to individual Series
Project description:Cutaneous squamous tumors rely on autocrine/paracrine loops for proper fitness. Targeting this Achilles’ heel is therefore considered a potential avenue for patient treatment. However, the mechanisms that engage and sustain such programs during tumor ontogeny are poorly understood. Here, we show that two Rho/Rac activators, the exchange factors Vav2 and Vav3, control the expression of an epithelial autocrine/paracrine program that regulates keratinocyte survival and proliferation as well as the creation of an inflammatory microenvironment. Vav proteins are also critically involved in some of the subsequent autocrine signaling loops activated in keratinocytes. The genetic inactivation of both Vav proteins reduces tumor multiplicity without hampering skin homeostasis, thus suggesting that pan-specific Vav therapies may be useful in skin tumor prevention and treatment. The dorsal skin of WT and DKO mice (Vav2-/-;Vav3-/-) were treated with either one or four applications of phorbol ester 12-O-tetradecanoylphorbol-13 acetate (TPA) (6.8 nmol in 200 μl acetone) two days after shaving. As control, we applied 200 μl of acetone. Animals were euthanized 24 hours after treatment.