Aorta- and liver-specific ERalpha binding patterns and gene regulation by estrogen
Ontology highlight
ABSTRACT: Estrogen has vascular protective effects in premenopausal women and in women under 60 receiving hormone replacement therapy. However, estrogen also increases risks of breast and uterine cancers and of venous thromboses linked to upregulation of coagulation factors in the liver. In mouse models, the vasoprotective effects of estrogen are mediated by the estrogen receptor alpha (ERa) transcription factor. Here, through next generation sequencing approaches, we show that almost all of the genes regulated by 17-b-estradiol (E2) differ between mouse aorta and mouse liver, and that this is associated with a distinct genomewide distribution of ERa on chromatin. Bioinformatic analysis of E2-regulated promoters and ERa binding site sequences identify several transcription factors that may determine the tissue specificity of ERa binding and E2-regulated genes, including the enrichment of NFkB, AML1 and AP-1 sites in the promoters of E2 downregulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggests ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues. Our results also highlight the likely importance of rapid signaling of membrane-associated ERa to cellular kinases (altering the activities of transcription factors other than ER itself) in determining tissue specific transcriptional responses to estrogen. The aortas or liver fragments of wild-type C57/BL6 mice were incubated ex vivo with 10nM E2 or ethanol vehicle for 4 hours before harvesting for RNA collection. Each condition was performed with two biological replicates, and each replicate contained aortas or liver fragments from 4 mice.
ORGANISM(S): Mus musculus
SUBMITTER: Gavin Schnitzler
PROVIDER: E-GEOD-57804 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA