Dynamic miRNA Expression Patterns During Retina Regeneration in Zebrafish: Loss of Dicer Inhibits Regeneration
Ontology highlight
ABSTRACT: Background: Adult zebrafish spontaneously regenerate their retinas after damage. Although a number of genes and signaling pathways involved in regeneration have been identified, the extent of mechanisms regulating regeneration is unclear. Small non-coding RNAs, microRNAs (miRNAs), that regulate regeneration of various tissues in lower vertebrates were examined for their potential roles in regulating zebrafish retinal regeneration. Results: To investigate the requirement of miRNAs during zebrafish retinal regeneration, we knocked down the expression of the miRNA-processing enzyme Dicer in retinas prior to light-induced damage. Dicer loss significantly reduced proliferation of Müller glia-derived neuronal progenitor cells during regeneration. To identify individual miRNAs with roles in retina regeneration, we collected retinas at different stages of light damage and performed small RNA high-throughput sequencing. We identified subsets of miRNAs that were differentially expressed during active regeneration but returned to basal levels once regeneration was completed. To validate the roles of differentially expressed miRNAs, we knocked down 6 different miRNAs that were upregulated in expression during regeneration and demonstrated that they have distinct effects on neuronal progenitor cell proliferation and migration during retina regeneration. Conclusions: miRNAs are necessary for retinal regeneration. miRNA expression is dynamic during regeneration. miRNAs function during initiation and progression of retinal regeneration. Identification of miRNAs before, during and after completion of zebrafish retinal regeneration
ORGANISM(S): Danio rerio
SUBMITTER: James Patton
PROVIDER: E-GEOD-58702 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA