Functional diversity and convergence of small non-coding RNAs in male germ cell differentiation and fertilization (mRNA analysis)
Ontology highlight
ABSTRACT: The small non-coding RNAs (sncRNAs) are considered as postranscriptional key regulators of male germ cell development. In addition to microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), other sncRNAs generated from small nucleolar RNAs (snoRNAs), tRNAs or rRNAs processing may also play important regulatory roles in spermatogenesis. By next generation sequencing (NGS), we characterized the different sncRNA populations detected at three milestone stages in male germ differentiation: primordial germ cells (PGCs) at 13.5 dpc, pubertal spermatogonia cells, and mature spermatozoa. In order to assess the potential transmission of the sncRNAs through the mature spermatozoa during fertilization, the sncRNA population detected in male germ cells was also compared with sncRNAs detected in unfertilized mouse oocytes and zygotes. Combining the data obtained by NGS and microarrays from whole PGC and spermatogonia transcriptome, we defined the potential regulatory roles of specific miRNAs and their validated targets. Similar to miRNAs, both the small RNAs derived from snoRNAs and the piRNAs, could be involved in the postranscriptional regulation of mRNA transcripts during the male germ development. Finally, our results strongly suggest that the small RNAs-derived from tRNAs and rRNAs are interacting with PIWI proteins, and specifically with MILI. These new classes of piRNAs are not generated by the ping-pong pathway and could be the source of primary piRNAs. mRNA analysis of Primordial Germ Cells (PGCs), Spermatogonia cells (SPG), adult testis (AdT) and Gonad-less (GL) embryos. Indirect comparisons were made across multiple arrays with raw data pulled from different channels for data analysis and comparison to the control data.
ORGANISM(S): Mus musculus
SUBMITTER: Jesus Garcia Lopez
PROVIDER: E-GEOD-59252 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA