Project description:ChIP-seq analysis of HepG2 cells revealed that many of the target genes of LSD2 were related to lipid metabolism. We found that LSD2 is an important epigenetic regulator of hepatic lipid metabolism. Examination of LSD2/DNA interaction in HepG2 cells in normal condition.
Project description:ChIP-seq analysis of LSD2-depleted HepG2 cells revealed that many of the target genes were related to lipid metabolism. We found that LSD2 is an important epigenetic regulator of hepatic lipid metabolism. Examination of LSD2/H3K4me1 interaction in control and LSD2-knockdowned HepG2 cells.
Project description:Pitx2 is the homeobox gene located in proximity to the human 4q25 familial atrial fibrillation locus. Pitx2 haploinsufficient mice are prone to pacing induced atrial fibrillation indicating that reduced Pitx2 promotes an arrhythmogenic substrate within the atrium. Here, we inactivated Pitx2 in postnatal heart and discovered that unstressed adult Pitx2 mutant mice had sinus node dysfunction with impaired atrial conduction, an arrhythmia closely associated with atrial fibrillation. A genome-wide search for Pitx2 transcriptional targets using ChIP-sequencing and RNA expression profiling shows that Pitx2 represses target genes encoding cell junction proteins, ion channels, and critical transcriptional regulators many of which have been implicated in human atrial fibrillation by genome wide association studies. Our findings unveil a Pitx2 postnatal arrhythmogenic function, novel Pitx2 target genes relevant to atrial fibrillation, and reveal that Pitx2 stabilizes the intercalated disc in postnatal atrium. Genomic occupancy profiling of transcriptional factor Pitx2 in postnatal heart.
Project description:We addressed the integrated analysis of mRNA and miRNA expression levels of Tg6799 AD model mice at 4 month and 8 months of age. Total 8 gene cluster modules for co-expression network were predicted from transcriptome data and 6 modules were show relation with AD or aging. We constructed early stage AD network using data integration between mRNA and miRNA profiles and predicted miRNAs strongly involved in module regulation. We found that ARRDC3 showed AD mutation dependent changes of expression and was related metabolic dysfunction in early stage AD. These results demonstrate that candidate genes on the simultaneous profiling of mRNA and miRNA expressions in genome wide can be used for the understanding of non-coding RNA related gene expression in early stage AD. We suggested that our results could be future candidate to be developed as early biomarkers in progressive AD pathology. This result can be used for the further application in neurodegenerative diseases. Tg6799 transgenic mice were purchased from The Jackson Laboratory (USA) and were housed under a 12h light-dark cycle with free access to food and water. Female Tg6799 mice are maintained until 4 months and 8 months of age (for littermate control: LM and mutant subjects: MT). RNA samples were isolated from hippocampus of mice using TRI-Reagent (Sigma-Aldrich, St. Louis, MO) according to the manufacturer’s instructions. Gene expression was analyzed with GeneChip® Mouse Genome 430 2.0 Arrays (Affymetrix, Santa Clara, CA), which is comprised of over 45,000 probe sets representing approximately 28,700 well-characterized mouse genes. The Ion Total RNA-Seq Kit v2 (Lifetechnologies, USA) was used for the preparation of micro RNA libraries according to the manufacturer's instructions. Total numbers of subject used are as followed: 1) LM 4 months : MT 4 months : LM 8 months : MT 8 months (2:4:2:4) for screening mRMA and miRNA, 2) LM 4 months : MT 4 months : LM 8 months : MT 8 months (4:4:4:4) for expression verification.
Project description:Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is a widely used approach to study DNA methylation genome-wide. Here, we present a novel MeDIP-Seq protocol compatible with the Ion Torrent semiconductor-based sequencing platform that is scalable and accurately identifies sites of differential DNA methylation. Additionally, we demonstrate that the high-throughput data derived from MeDIP-Seq on the Ion Torrent platform provides adequate coverage of CpG cytosines, the methylation states of which we validated at single-base resolution on the Infinium HumanMethylation450K Beadchip array. We applied this integrative approach to further investigate the role of DNA methylation in alternative splicing and to profile 5-mC and 5-hmC variants of DNA methylation in normal human brain tissue that we observed localize over distinct genomic regions. These applications of MeDIP-Seq on the Ion Torrent platform have broad utility and add to the current methodologies for profiling genome-wide DNA methylation states in normal and disease conditions. MeDIP-Seq on Ion Torrent Platform in HCT116 and Human Brain
Project description:LHY and CCA1 encode single MYB transcription factors, involved in circadian clock. However, direct target genes of LHY and CCA1 in a genomic scale were largely unknown. To reveal bound genes by CCA1, chimeric protein CCA1-FLAG was expressed under CCA1 promoter in cca1 lhy (CCA1pro:CCA1-FLAG/ cca1 lhy). ChIP was performed using anti-FLAG antibody (F3165; SIGMA), which was bound to Dynabeads Protein G (100-03D; Life Technologies), and ChIP DNA were analyzed by IonPGM or Illumina GAII. Chromatin immunoprecipitation was performed for CCA1-FLAG-expressing Arabidopsis. ChIP DNA was analyzed 2 types of deep sequencers (Illumina GAII and IonPGM).
Project description:Background: Repair of DNA damage requires chromatin remodeling to permit removal of the lesions. How nucleosomes are remodelled to initiate repair of DNA damage remains largely unknown. Here, we describe how chromatin is altered during repair of UV-induced DNA damage at the level of the linear organisation of nucleosomes. Results: Using MNase-seq, we identified a subset of nucleosomes in the genome that are remodelled in UV-damaged wild-type yeast cells. We mapped the genomic location of these nucleosomes, showing that they contain the histone variant H2A.Z. The remodelling observed is consistent with histone exchange or eviction at these positions. This depends on the yeast SWI/SNF global genome nucleotide excision repair (GG-NER) chromatin-remodelling complex. Remarkably, we found that in the absence of DNA damage, the GG-NER complex occupies chromatin at nucleosome free regions separating adjacent nucleosomes. This establishes the nucleosome structure at these genomic locations, which we refer to as GG-NER complex binding sites (GCBS’s). We observed that these sites are frequently located precisely at certain boundary regions that delineate chromasomally interacting domains (CIDs). These boundaries define chromosomal domains of higher-order nucleosome-nucleosome interaction. We demonstrate that the GG-NER complex redistributes following remodelling of these nucleosomes after DNA damage taking up genomic positions located within the CIDs. This permits the efficient removal of DNA damage at these sites. Conclusions: We argue that organising DNA repair in the genome as described may define origins of DNA repair that greatly reduces the genomic search space for DNA damage recognition, thus ensuring the efficient repair of damage in chromatin.
Project description:Ossification of the posterior longitudinal ligament (OPLL) is formed by heterogeneous ossification of posterior longitudinal ligament. The patho-mechanism of OPLL is still largely unknown. MicroRNAs are small nucleatides that function as regulators of gene expression in almost any biological process. However, few microRNAs are reported to have a role in the pathological process of OPLL. Therefore, we performed high-throughput microRNA sequencing and transcriptome sequencing of primary OPLL and PLL cells in order to decipher the interacting network of microRNAs in OPLL. MRNA and microRNA profiles were done using primary culture cells of human ossification of the posterior longitudinal ligament (OPLL) tissue and normal posterior longitudinal ligament (PLL) tissue.