Project description:Tissue-resident macrophages comprise heterogeneous populations with unique functions and distinct gene expression signatures. While it has been established that they mostly originate from embryonic progenitors, the signals inducing a characteristic tissue-specific differentiation program remain unknown. Here we identify PPARγ as the crucial transcription factor determining perinatal alveolar macrophage (AM) development and identity. Development of the fetal monocyte derived AM precursor was largely abrogated in CD11c-Cre/Ppargfl/fl mice. To reveal the underlying changes in gene expression, we performed microarray analysis of sorted WT and KO AM and pre-AM from 3 different timepoints. Part1: d2 and d11 sorts & array pre-AM FACS-sorted from lungs of d2 and mature AM from d11 PPARgfl/fl (WT) and CD11c-cre/PPARgfl/fl (KO) mice and subsequently processed for RNA extraction and hybridization on Affymetrix microarrays. 2 biological replicates per group, each composed of pooled cells from 2 individual mice
Project description:Tissue-resident macrophages comprise heterogeneous populations with unique functions and distinct gene expression signatures. While it has been established that they mostly originate from embryonic progenitors, the signals inducing a characteristic tissue-specific differentiation program remain unknown. Here we identify PPARγ as the crucial transcription factor determining perinatal alveolar macrophage (AM) development and identity. Development of the fetal monocyte derived AM precursor was largely abrogated in CD11c-Cre/Ppargfl/fl mice. To reveal the underlying changes in gene expression, we performed microarray analysis of sorted WT and KO AM and pre-AM from 3 different timepoints. Part2: adult sorts & array AM FACS-sorted from lungs of adult PPARgfl/fl (WT) and CD11c-cre/PPARgfl/fl (KO) mice and subsequently processed for RNA extraction and hybridization on Affymetrix microarrays. 2 biological replicates per group, each composed of pooled cells from 2 individual mice
Project description:Analysis of stage-specific gene expression in Zbtb46GFP/+ pre-CD8 DCs, pre-CD4 DCs, CD24 cDCs and CD172a cDCs Bone Marrow and Splenocytes were harvested from 8-10 littermate Zbtb46GFP/+ mice and sorted to >95% purity on the FACS AriaFusion.
Project description:Recent data from our group, demonstrate that infusion of myelin oligodendrocyte glycoprotein (MOG35-55) peptide, leads to induction of MOG35-55-specific Tregs and subsequent suppression of Experimental Autoimmune Encephalomyelitis (EAE), the mouse model of multiple sclerosis. Amelioration of EAE was accompanied by reduced MOG-specific Th1 and Th17 responses in the draining lymph nodes (dLNs). Phenotypic analysis of the dLNs of MOG-infused mice revealed a significant Treg-mediated reduction in the recruitment of 7AAD-CD3-CD19-CD11c+CD11bhighGr-1+ iDCs compared to non-infused control immunized mice. Focusing on the delineation of novel molecules/genes that are involved in the MOG-specific Treg-mediated suppression of autoimmune responses, we have isolated highly purified iDCs from MOG infused and non-infused control immunized mice. Gene expression profiles of iDCs isolated from tolerized or immunized mice. Affymetrix MG 430 2.0 whole genome arrays were performed in triplicates for tolerized iDCs and immunized iDCs (6 arrays in total, 5 of them were analyzed). To obtain genes significantly regulated in iDCs upon tolerization with MOG35-55, the expression profiles of iDCs isolated from tolerized or immunized mice were compared to each other. After total RNA extraction, reverse transcription, cDNA extraction, the biotinylated cRNA was transcribed, fragmented, and 15 µg cRNA hybridized to the 6 GeneChip arrays: Group1 iDCs isolated from tolerized mice, Group2 iDCs isolated from immunized mice.
Project description:We investigated the transcriptomes of monocytes in a variety of mouse tissue. Monocytes were were identified as CD45+ Lin(CD3ε, TCR-β, CD19, B220, NK1.1, Ter119, Siglec F, Ly6G)- CD11b+ Ly6Chi CD64- MHCII- and their RNA was sequenced on the Illumina HiSeq2500PE
Project description:Systems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology. Here we used the systems vaccinology approach to study the molecular mechanisms underlying the innate responses to the trivalent inactivated influenza (TIV) and live attenuated influenza (LAIV) vaccination in humans, and to identify early gene signatures that predict the magnitude of the antibody responses to influenza vaccination. During the 2008 influenza season, healthy adults were vaccinated with TIV (6 vaccinees) or LAIV (6 vaccinees), and blood samples isolated at day 0 and at day 7 post-vaccination. Cell subsets (B cells, Monocytes, mDCs and pDCs) were FACS-sorted from frozen PBMCs. Microarrays were performed using amplified total RNA.
Project description:Purpose: In all vertebrates, the thymus is necessary and sufficient for production of classic adaptive T cells. The key components of the thymus are cortical and medullary thymic epithelial cells (cTECs and mTECs). Despite the capital role of TECs, our understanding of TEC biology is quite rudimentary. For instance, we ignore what might be the extent of divergence in the functional program of these two TECs populations. It also remains unclear why the number of TECs decreases rapidly with age, thereby leading to progressive thymic insufficiency. Methods: Systems level understanding of cell function begins with gene expression profiling, and the transcriptome is currently the only '-ome' that can be reliably tackled in its entirety in freshly harvested primary cells. In order to gain novel insights into TEC biology, we therefore decided to analyse the whole transcriptome of cTECs, mTECs and skin epithelial cells. We elected to analyse gene expression using RNA-seq rather microarrays because RNA-seq has higher sensitivity and dynamic range coupled to lower technical variations. Results: Our deep sequencing approach provides a unique perspective into the transcriptome of TECs. Consistent with their ability to express ectopic genes, we found that mTECs expressed more genes than other cell populations. Out of a total of 15,069 genes expressed in TECs, 25% were differentially expressed by at least 5-fold in cTECs vs. mTECs. Genes expressed at higher levels in cTECs than mTECs regulate numerous cell functions including cell differentiation, cell movement and microtubule dynamics. Almost all positive regulators of the cell cycle were overexpressed in skin ECs relative to TECs. Conclusions: Our RNA-seq data provide novel insights into the transcriptional landscape of TECs, highlight substantial divergences in the transcriptome of TEC subsets and suggest that cell cycle progression is differentially regulated in TECS and skinECs. We believe that our work will therefore represent a valuable resource and will be of great interest to readers working in biological sciences, particularly in the areas of immunology and systems biology. The mRNA profiles of cTEC, mTEC (from 14 thymi of 7-days old C57BL/6 mice) and skinEC (from the trunk and dorsum of seven newborn mice) were generated by RNA-sequencing using Illumina HiSeq2000.
Project description:Innate lymphoid cells (ILC) are tissue-resident effector cells with important roles in tissue homeostasis, protective immunity and inflammatory disease. Here we investigated the role of the transcription factor Bcl6 in small intestinal innate lymphoid cells. Specifically, we performed single-cell RNA-seq on total small intestine lamina propria ILCs from tamoxifen-treated Id2-CreERT2 ROSA26-tdRFP Bcl6-fl/fl mice and Id2-CreERT2 ROSA26-tdRFP controls.
Project description:Renal dendritic cells play key roles in renal homeostasis and during kidney allograft rejection. Microarray analysis aims to evaluate whether dendritic cells modulate their gene expression profile in relation to their distribution in the different renal compartments (with varying biophysical characteristics), under homeostatic conditions and during acute renal allograft rejection (3 days post-transplantation). Renal dendritic cells from homeostatic (healthy) kidneys and donor/host dendritic cells from renal allografts (3 days post-kidney transplantation) were isolated from cortex and medulla, through fluorescence-activated cell sorting (FACS). Total RNA was isolated from FACS-sorted cells and amplified. The cDNA product was fragmented, biotin-labeled and hybridized on Affimetrix arrays.
Project description:We compared the cellular and molecular outcome following permanent LAD ligation in wildtype and T- and B cell deficient Rag2del mice. Our results demonstrate that the significant changes in the cardiac immune response following myocardial infarction (MI). 8-12 weeks old, male and female C57BL/6J mice (Charles River, Wilmington, MA, USA) and B6.Rag2del mice (Jackson laboratory, Bar Harbor, ME, USA) were used for this study. Seven days after MI, entire mouse ventricles were isolated and enzymatically digested. Cells were then labelled with CD45 magnetic beads (Miltenyi Biotec, Germany) and positively enriched using the AutoMACS instrument (Miltenyi Biotec, Germany). Viable macrophages/monocytes (CD45+CD11b+CD11c-DAPI-Lactadherinlo), dendritic cells (CD45+CD11b+CD11c+ DAPI-Lactadherinlo), and NK cells (CD45+CD11b-CD11c+NK1.1+ DAPI-Lactadherinlo) were then sorted on the BD FACSAriaTM IIIu (Becton Dickinson, Franklin Lakes, NJ, USA) roughly in a 1:1:1 ratio into DMEM containing 10% FCS before processing for 10× Genomics single-cell RNA sequencing (scRNA-Seq). Libraries for scRNA-Seq were constructed according to the 10× Genomics protocol using the GemCode Single-Cell 3′ Gel Bead and Library V3 Kit. Quality of amplified cDNA and final libraries were evaluated on the 2100 Bioanalyzer instrument (Agilent) using a High Sensitivity NGS Analysis Kit (Advanced Analytical). Subsequent sequencing was conducted on the HighSeq4000 Sequencing System using the HiSeq SBS and HiSeq PE Cluster Kit V4 (all Illumina, San Die-go, CA. USA).