Whole-genome expression profile in zebrafish embryos after chronic exposure to morphine
Ontology highlight
ABSTRACT: A great number of studies have investigated changes induced by morphine exposure in gene expression using several experimental models. In this study, we examined gene expression changes during chronic exposure to morphine during maturation and differentiation of zebrafish CNS. Our study identified different functional classes of genes and individual candidates involved in the mechanisms underlying susceptibility to morphine actions related to CNS development. These results open new lines to study the treatment of pain and the molecular mechanisms involved in addiction. We also found a set of zebrafish-specific morphine-induced genes, which may be putative targets in human models for addiction and pain processes. Zebrafish embryos were divided into two experimental groups: control embryos and embryos at 5 hpf exposed to 10 nM morphine and collected at 24 hpf (covering the complete embryogenesis). Morphine was administered to the embryos in their water environment, i.e., diluted in E3 embryonic medium. The exposition to begun at the stage of 5 hpf (end of blastula) is continuous, in order to study the chronic effects of the exposure to drug. Microarray experiments were performed using six replicates for each condition, which contained the RNA of approximately one hundred embryos to minimize the influence of potential individual differences between the animals and technical variation introduced by tissue preparation. We previously reported that a concentration of 10 nM morphine is the highest concentration that can be used without a toxic effect on the embryos, and close to 5% of the morphine diluted in the E3 medium is detected in the embryo.
ORGANISM(S): Danio rerio
SUBMITTER: Raquel Rodriguez
PROVIDER: E-GEOD-61062 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA