Project description:To assess neuronal expression divergence between mice and rats, we used the Affymetrix array platform to assay the transcriptomes of micro-dissected individual soma and pool of dendrites of hippocampal neurons in dispersed primary cell cultures from rat and mouse. Using microdissected soma and dendrites from primary cultures of hippocampal neurons of two mouse strains (C57BL/6 and Balb/c) and one rat strain (Sprague-Dawley), we investigate via microarrays, subcellular localization of mRNAs in neurons
Project description:To assess neuronal expression divergence between mice and rats, we used the Affymetrix array platform to assay the transcriptomes of micro-dissected individual soma and pool of dendrites of hippocampal neurons in dispersed primary cell cultures from rat and mouse. Using microdissected soma and dendrites from primary cultures of hippocampal neurons of two mouse strains (C57BL/6 and Balb/c) and one rat strain (Sprague-Dawley), we investigate via microarrays, subcellular localization of mRNAs in neurons
Project description:Using microdissected dendrites from primary cultures of hippocampal neurons of two mouse strains (C57BL/6 and Balb/c) and one rat strain (Sprague-Dawley), we investigate via microarrays, subcellular localization of mRNAs in dendrites of neurons to assay the evolutionary differences in subcellular dendritic transcripts localization. To assess neuronal dendrite expression divergence between mice and rats, we used the Affymetrix array platform to assay the transcriptomes of micro-dissected individual dendrites of hippocampal neurons in dispersed primary cell cultures from Sprague-Dawley rat (9 biological replicates), C57BL/6 mouse (14 biological replicates), and Balb/c mouse (5 biological replicates)
Project description:Using microdissected dendrites from primary cultures of hippocampal neurons of two mouse strains (C57BL/6 and Balb/c) and one rat strain (Sprague-Dawley), we investigate via microarrays, subcellular localization of mRNAs in dendrites of neurons to assay the evolutionary differences in subcellular dendritic transcripts localization. To assess neuronal dendrite expression divergence between mice and rats, we used the Affymetrix array platform to assay the transcriptomes of micro-dissected individual dendrites of hippocampal neurons in dispersed primary cell cultures from Sprague-Dawley rat (9 biological replicates), C57BL/6 mouse (14 biological replicates), and Balb/c mouse (5 biological replicates)
Project description:To assess in order to assess potential disparities in gene expression due to developmental differences we performed a comparison between hippocampus and heart tissues from rat and mouse pup (one week old) and adult (10 week old) animals. Using heart and hippocampal tissue from mouse (C57BL/6) and rat (Sprague Dawley) we investigate via microarrays, gene expression divergence at the tissue level between a Brain and a Non-brain tissue. We also investigated any developement difference in gene expression between pups and adult animals. For the pups samples we used 3 biological replicates and for the adult samples we used 2 biological replicates with 2 technical replicates for each.
Project description:To assess in order to assess potential disparities in gene expression due to developmental differences we performed a comparison between hippocampus and heart tissues from rat and mouse pup (one week old) and adult (10 week old) animals. Using heart and hippocampal tissue from mouse (C57BL/6) and rat (Sprague Dawley) we investigate via microarrays, gene expression divergence at the tissue level between a Brain and a Non-brain tissue. We also investigated any developement difference in gene expression between pups and adult animals. For the pups samples we used 3 biological replicates and for the adult samples we used 2 biological replicates with 2 technical replicates for each.
Project description:The transcription factor Pax6 is comprised of the paired domain (PD) and homeodomain (HD). In the developing forebrain, Pax6 is expressed in ventricular zone precursor cells and in specific subpopulations of neurons; absence of Pax6 results in disrupted cell proliferation and cell fate specification. Pax6 also regulates the entire lens developmental program. To reconstruct Pax6-dependent gene regulatory networks (GRNs), ChIP-seq studies were performed using lens and forebrain chromatin from mice. A total of 3,723 (forebrain) and 3,514 (lens) Pax6-containing peaks were identified, with ~70% of them found in both tissues and thereafter called “common” peaks. Analysis of Pax6-bound peaks identified motifs that closely resemble Pax6-PD, -PD/HD and -HD established binding sequences. Mapping of H3K4me1, H3K4me3, H3K27ac, H3K27me3 and RNA polymerase II revealed distinct types of tissue-specific enhancers bound by Pax6. Pax6 directly regulates cortical neurogenesis through activation (e.g. Dmrta1 and Ngn2) and repression (e.g. Ascl1, Fezf2, and Gsx2) of transcription factors. In lens, Pax6 directly regulates cell cycle exit control via components of FGF (Fgfr2, Ccnd1, and Prox1) and Wnt (Dkk3, Wnt7a, Lrp6, Bcl9l, and Ccnd1) signaling pathways. Collectively, these studies provide genome-wide analysis of Pax6-dependent GRNs in lens and forebrain and establish novel roles of Pax6 in organogenesis. Examination of Pax6 in mouse embryonic forebrain and newborn lens. We performed ChIP-seq on mouse E12.5 embryonic forebrain and newborn lens. Genome-wide binding sites of Pax6, H3K4me1, H3K4me3, H3K27ac, H3K27me3, and Pol2 were generated. We also performed RNA-seq on mouse E12.5 embryonic forebrain and newborn lens epithelial cells and fibers.
Project description:Mouse adult female brainM-bM-^@M-^Ys cortex (C57BL/6, Charles River Laboratories, Inc.) was isolated and stored immediately at -80M-BM-0C. Subsequently, the mRNA (15M-BM-5g) was isolated using TRIzol Reagent and MicroFastTrack 2.0 Kit (Invitrogen). A Sample of 5M-BM-5g was assessed on Affymetrix Mouse 430.2 array. Aliquots from the leftovers of the same cortical mRNA were diluted to single-cell RNA levels (0.1, 1, and 10 pg) and independently aRNA amplified for a total of 2 and 4 rounds and assessed on Affymetrix Mouse 430.2 arrays. A Sample of 5M-BM-5g of mRNA was assessed on Affymetrix Mouse 430.2 array. Aliquots from the leftovers of the same cortical mRNA were diluted to single-cell RNA levels (0.1, 1, and 10 pg) and independently amplified, as described above, for a total of 2 and 4 rounds and assessed on Affymetrix Mouse 430.2 arrays.
Project description:To study the relationship between microRNAs and μ-opioid receptor (MOR) signaling, we examined microRNA expression after chronic morphine or fentanyl treatment in rat primary hippocampal neurons and in mouse hippocampus. Mouse cerebellum region was also tested as a negative control to eliminate microRNA expression changes unrelated to MOR signaling, as the cerebellum is essentially devoid of MOR. We identified a number of microRNAs that altered their expression upon treatment with both morphine and fentanyl in the rat and mouse systems. There were, however, some microRNAs that changed in response to morphine, or fentanyl, but not both. Keywords: Expression profiling There are up to three biological replicates (indicated by 1, 2, and 3) of primary hippocampal neurons from new born rats and the cerebellum and hippocampus regions from adult mice treated for three days (control, morphine, and fentanyl). The biological replicates were from experiments performed on different dates. Each biological replicate contained cells or tissues collected from multiple animals so that enough RNA could be extracted for RNA analysis. RNA was labelled with a green dye, mixed with a reference DNA sample labelled with a red dye. The reference DNA contained a number of synthetic DNA oligos with mature microRNA sequences that served to verify microarray hybridization. RNA signals were in ch1, DNA signals ch2.
Project description:Global transcriptional responses in duodenal intestinal epithelia of chickens following primary and secondary Eimeria acervulina infections. Simple loop hybridization (day 0 vs. days 1-2, days 1-2 vs. 3-4, days 3-4 vs. 5-6, and days 5-6 vs. 7-8) per primary or secondary infections.