Expression data from the commensal bacteria Escherchia coli strain HB101 interacting with Caenorhabditis elegans and/or Giardia duodenalis
Ontology highlight
ABSTRACT: Homeostatic interactions between the host and its resident microbiota is important for normal physiological functions and if altered, it could lead to dysbiosis, a change in the structure and function of the microbiota, and as a result to various pathophysiologies. Altered structure in bacterial community is associated with various pathophysiologies, but we are just beginning to understand how these structural changes translate into functional changes. Environmental factors including pathogenic infections can lead to altered interactions between the host and its resident microbiota. We used microarray analysis and a C. elegans model system to gain insights on the mechanisms of functional changes in host-commensal bacteria interaction in the presence or absence of G. duodenalis and identified expression pattern in commensal bacteria that are characteristic of homeostatic and dysbiotic interactions. E. coli HB101 exposed to C. elegans in the presence or absence of G. duodenalis conditioned S-basal complete media for 24 hours were used for RNA extraction and hybridization on Affymetrix microarrays. We collected expression data for E. coli HB101, E. coli HB101 exposed to C. elegans, E. coli HB101 exposed to Giardia conditioned media, and E. coli HB101 exposed to both C. elegans and Giardia conditioned media.
ORGANISM(S): Escherichia coli
SUBMITTER: Teklu Gerbaba
PROVIDER: E-GEOD-61092 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA