Transcription profiling of human lymphatic endothelial cells, mouse dermal cells and human skin cells reveals an inflammation-induced mechanism for leukocyte transmigration of lymphatic vessel endothelium.
Ontology highlight
ABSTRACT: The exit of antigen-presenting cells (APC) and lymphocytes from inflamed skin to afferent lymph is vital for the initiation and maintenance of dermal immune responses. How such exit is achieved and how cells transmigrate the distinct endothelium of lymphatic vessels is however unknown. Here we show that inflammatory cytokines trigger activation of dermal lymphatic endothelial cells (LEC) leading to expression of the key leukocyte adhesion receptors ICAM-1, VCAM-1 and E-selectin, as well as a discrete panel of chemokines and other potential regulators of leukocyte transmigration. Furthermore, we show that both ICAM-1 and VCAM-1 are induced in the dermal lymphatic vessels of mice exposed to skin contact hypersensitivity where they mediate lymph node trafficking of DC via afferent lymphatics. Lastly, we show that TNF_-stimulates both DC adhesion and transmigration of dermal LEC monolayers in vitro and that the process is efficiently inhibited by ICAM-1 and VCAM-1 adhesion-blocking mAbs. These results reveal a CAM-mediated mechanism for recruiting leukocytes to the lymph nodes in inflammation and highlight the process of lymphatic transmigration as a potential new target for anti-inflammatory therapy. Experiment Overall Design: Global gene expression profile of normal dermal lymphatic endothelial cells cultured in media alone (no TNF) compared to that of normal dermal lymphatic endothelial cells stimulated with TNFalpha, 1 ng/ml for 48h.Triplicate biological samples were analyzed from human lymphatic endothelial cells (3 x controls; 3 x TNF treated) and a single sample analyzed from mouse lymphatic endothelial cells (1 x controls; 1 x TNF treated).
ORGANISM(S): Homo sapiens
SUBMITTER: Dilair Baban
PROVIDER: E-GEOD-6257 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA