Gene expression and alternative splicing data from human cartilage endplate-derived stem cells
Ontology highlight
ABSTRACT: Low back pain (LBP) is one of the most prevalent conditions which need medical advice and result in chronic disabilities. Degenerative disc disease (DDD) is a common reason for LBP. A lot of researchers think that CEP degeneration play critical roles in the initiation and development of DDD. In recent years, researchers have put interests on cell-based therapies for regenerating disc structure and function. Our research team has isolated cartilage endplate-derived stem cells (CESCs) and validated their chondrogenic and osteogenic differentiation ability. Enhanced chondrogenic differentiation and inhibited osteogenic differentiation of CESCs may retard CEP calcification and restore the nutrition supply, possibly regenerating the degenerated discs. We used Affymetrix Human Transcriptome Array 2.0 to study the global gene expression profilling and alternative splicing events during the chondrogenic and osteogenic differentiation of cartilage endplate-derived stem cells. The cartilage endplate-derived stem cells(CESCs) were induced to undergo chondrogenic(CD) and osteogenic differentiation(OD). Both undifferentiated and differentiated CESCs were sent for RNA extraction and hybridization on Affymetrix microarrays. A comparative analysis was done between the undifferentiated and differentiated samples.
ORGANISM(S): Homo sapiens
SUBMITTER: Jin Shang
PROVIDER: E-GEOD-63897 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA