Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Reprogramming LCLs to iPSCs Results in Recovery of Donor-Specific Gene Expression Signature


ABSTRACT: Renewable in vitro cell cultures, such as lymphoblastoid cell lines (LCLs), have facilitated studies that contributed to our understanding of genetic influence on human traits. However, the degree to which cell lines faithfully maintain differences in donor-specific phenotypes is still debated. We have previously reported that standard cell line maintenance practice results in a loss of donor-specific gene expression signatures in LCLs. An alternative to the LCL model is the induced pluripotent stem cell (iPSC) system, which carries the potential to model tissue-specific physiology through the use of differentiation protocols. Still, existing LCL banks represent an important source of starting material for iPSC generation, and it is possible that the disruptions in gene regulation associated with long-term LCL maintenance could persist through the reprogramming process. To address this concern, we studied the effect of reprogramming mature LCLs to iPSCs on the ensuing gene expression patterns within and between six unrelated donor individuals. We show that the reprogramming process results in a recovery of donor-specific gene regulatory signatures. Since environmental contributions are unlikely to be a source of individual variation in our system of highly passaged cultured cell lines, our observations suggest that the effect of genotype on gene regulation is more pronounced in the iPSCs than in the LCL precursors. Our observations indicate that iPSCs can be a powerful model system for studies of phenotypic variation across individuals in general, and the genetic association with variation in gene regulation in particular. We further conclude that LCLs are an appropriate starting material for iPSC generation. Whole genome gene expression data was collected for 34 samples including 17 iPSC lines and 17 LCL lines on the Illumina HT-12 v4 Expression BeadChip array platform. Three biological replicates of each individual were included in the study, except for one individual for which only two replicates were obtained.

ORGANISM(S): Homo sapiens

SUBMITTER: Samantha Thomas 

PROVIDER: E-GEOD-64263 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2014-12-17 | GSE64263 | GEO
2017-02-11 | GSE74289 | GEO
2014-09-05 | E-GEOD-58942 | biostudies-arrayexpress
2014-09-10 | E-GEOD-60996 | biostudies-arrayexpress
2014-09-11 | E-GEOD-61342 | biostudies-arrayexpress
2015-06-08 | E-GEOD-69632 | biostudies-arrayexpress
2016-05-02 | GSE80969 | GEO
2016-06-29 | E-GEOD-73629 | biostudies-arrayexpress
2016-06-29 | E-GEOD-60922 | biostudies-arrayexpress
2016-06-29 | E-GEOD-75095 | biostudies-arrayexpress