Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Functional gene abundance was determined using GeoChip.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3) Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Microbial community structure was determined using PhyoChio (G3)
Project description:Escaped domesticated individuals can introduce disadvantageous traits into wild populations due to both adaptive differences between population ancestors and human-induced changes during domestication. In contrast to their domesticated counterparts, some endangered wild Atlantic salmon populations encounter during their marine stage large amounts of suspended sediments, which may act as a selective agent. We used microarrays to elucidate quantitative transcriptional differences between a domesticated salmon strain, a wild population and their first-generation hybrids during their marine life stage, to describe transcriptional responses to natural suspended sediments, and to test for adaptive genetic variation in plasticity relating to a history of natural exposure or nonexposure to suspended sediments. We identified 67 genes differing in transcription level among salmon groups. Among these genes, processes related to energy metabolism and ion homoeostasis were over-represented, while genes contributing to immunity and actin-/myosin-related processes were also involved in strain differentiation. DomesticM-bM-^@M-^Swild hybrids exhibited intermediate transcription patterns relative to their parents for two-thirds of all genes that differed between their parents; however, genes deviating from additivity tended to have similar levels to those expressed by the wild parent. Sediments induced increases in transcription levels of eight genes, some of which are known to contribute to external or intracellular damage mitigation. Although genetic variation in plasticity did not differ significantly between groups after correcting for multiple comparisons, two genes (metallothionein and glutathione reductase) tended to be more plastic in response to suspended sediments in wild and hybrid salmon, and merit further examination as candidate genes under natural selection. Salmon of three genotypes (strains: 1. wild (Stewiacke River salmon), 2. domesticated (Saint John River salmon), and 3. first generation hybrids between the two strains, were exposed to two environments (treatment: 1. suspended sediments, 2. control: clear water), using eight biological replicates (individuals) of each of the six experimental groups, summing up to 48 individuals, each individual has two technical replicates , each technical replicate has been labelled with a different dye, each technical replicate appears on a different array, dye swaps are equilibrated for arrays that combine individuals from different genotypes and for arrays that combine individuals from the same genotype but different environments. Technical replicates of individuals always appear once on arrays that compare between environments and once on arrays that compare among genotypes. In total there are 48 arrays.
Project description:We analyzed the transcriptional response of the actinomycete Rhodococcus aetherivorans I24 to biphenyl and polychlorinated biphenyls (PCBs). This species has not been extensively exposed to PCBs, as it was first isolated from a toluene contaminated aquifer, rather than a site contaminated with polychlorinated hydrocarbons. Using a microarray targeting 3524 genes, we assessed gene expression in minimal medium supplemented with various substrates (e.g. PCBs) and in both PCB-contaminated and non-contaminated sediment slurries. Relative to the reference condition (minimal medium supplemented with glucose), 408 genes were up-regulated in the various treatments. In medium and in sediment, PCBs elicited the up-regulation of a common set of 100 genes, including chaperones (groEL), a superoxide dismutase (sodA), alkyl hydroperoxide reductase protein C (ahpC), and a catalase/peroxidase (katG). Analysis of the R. aetherivorans I24 genome sequence identified orthologs of many of the genes in the canonical biphenyl pathway, but very few of these genes were up-regulated in response to PCBs or biphenyl. This study is one of the first which utilizes microarrays to assess the transcriptional response of a soil bacterium to a pollutant under conditions which more closely resemble the natural environment. Our results indicate that the transcriptional response of R. aetherivorans I24 to PCBs, in both medium and sediment, is primarily directed towards reducing oxidative stress, rather than catabolism. In addition, the identification of numerous genes expressed in contaminated soil specifically may have implications for the development of biosensors. Finally, comparative genomic and transcriptomic analyses suggest that the mere presence of orthologs of the required enzymes may not be sufficient to confer a vigorous biphenyl/PCB metabolism. RNA was isolated from cells incubated in the following: sediment from a PCB-contaminated industrial site, uncontaminated sediment from a comparable site, and defined media supplemented with glucose (3 g/L), glucose and biphenyl (3 g/L, 4.5 μM), or glucose and PCBs (3 g/L, 5 mg/L Aroclor 1254). In all cases, there were 3 biological replicates and 2 technical replicates (repeat hybridizations). A total of 3524 genes are represented on the arrays; of these, 41 and 176 are found on the plasmids pRA2 and pRA3, respectively. On average, there are 3 distinct 24nt probes per gene.
Project description:Samples collect to investigate the gene activity from microbial populations in marine steel corrosion, and to compare with gene activity in water and bed sediment samples from the surrounding area. The study was undertaken to (1) investigate mechanisms of microbially influenced corrosion (MIC) of marine steel, and (2) compare microbial population gene activity between corrosion and the surrounding environment. Purified DNA (1µg) was labelled with Cy3, purified and hybridised at 42°C for 16h with the GeoChipTM 5.0 on a MAUI hybridisation station (BioMicro, USA).
Project description:In this study, we investigated Mn3+-cycling microbial populations enriched from Lake Matano, Indonesia using metagenomics and metaproteomics. Lake Matano contains an active Mn cycle that links the oxic-anoxic interface with anoxic deep waters that are enriched in iron and manganese, and depleted in sulfate, phosphate, and oxidized nitrogen (Crowe et al., 2008; Jones et al., 2011). Sediments were incubated with sequential transfers for ~1 year with Mn3+ as the sole electron acceptor and methane as organic carbon until achieving sediment-free conditions. Here we investigate this novel species of Dechloromonas (Betaproteobacteria), “Candidatus Dechloromonas occultata,” which was the dominant population in enrichment cultures with active Mn3+ reduction. “Ca. D. occultata” expressed electron conduits related to those involved in Fe2+ oxidation (Mto-like), as well as a novel cytochrome c-rich gene cluster putatively involved in extracellular electron transfer, and an atypical nitrous oxide reductase. According to ribosomal counts, Dechloromonas outnumber Geobacter. In terms of functional genes, Dechloromonas expresses a wider variety and number of genes. Dechloromonas therefore seems to have a (selective?) advantage over Geobacter. Previous experiments revealed that Dechloromonas express nitrogen regulators, reductases and scavenging genes, as well as many carbon central metabolic pathways, and aromatic carbon degradation pathways. Dechloromonas is a beta proteobacteria, and these are "experts" in nitrogen metabolism. Geobacter, on the other hand, is well known for carbon degradation. Our previous experiments lead to our hypothesis that Dechloromonas is more active because they are more successful at acquiring nitrogen, a limiting nutrient for Geobacter. This would further suggest that carbon is not the limiting nutrient. We will test 2 hypotheses with the next suite of experiments 1) pyrophosphate supports the community, by allowing carbon fixation , 2)Dechloromonas has a (selective?) advantage over Geobacter. To test this hypothesis, bioreactors will be used to grow biotriplicate cultures of (1)- CH4 vs. pyrophosphate and (2)-CH4 vs. Mn(III) pyrophosphate. Here we have analyzed whole cell pellets using gas phase fractionations on the Q Exactive. Are Dechloromonas capable of out-competing Geobacter when grown in media with methane as the only carbon source bioreactors because they are capable of acquiring more nitrogen? Source of inoculum. Lake Matano is a metal-rich, ancient ocean analog (Crowe et al. 2011, Jones et al. 2011). Organic carbon in Lake Matano is mostly mineralized via methanogenesis before reaching the iron-rich sediments, limiting organic matter bioavailability for metal-reducers (Kuntz et al. 2015). A 15-cm sediment core from 200 m water depth in Lake Matano, Sulawesi Island, Indonesia (02°26′27.1′′S, 121°15′12.3′′E; in situ sediment temperature ~27°C) was sampled in November 2014 and sub-sampled at 5 cm increments. Sediments were sealed in gas-tight Mylar bags with no headspace (Hansen et al. 2000) and stored at 4°C until incubations began in December 2015.
Project description:Gas hydrates, also known as clathrates, are cages of ice-like water crystals encasing gas molecules such as methane (CH4). Despite the global importance of gas hydrates, their microbiomes remain mysterious. Microbial cells are physically associated with hydrates, and the taxonomy of these hydrate-associated microbiomes is distinct from non-hydrate-bearing sites. Global 16S rRNA gene surveys show that members of sub-clade JS-1 of the uncultivated bacterial candidate phylum Atribacteria are the dominant taxa in gas hydrates. The Atribacteria phylogeny is highly diverse, suggesting the potential for wide functional variation and niche specialization. Here, we examined the distribution, phylogeny, and metabolic potential of uncultivated Atribacteria in cold, salty, and high-pressure sediments beneath Hydrate Ridge, off the coast of Oregon, USA, using a combination of 16S rRNA gene amplicon, metagenomic, and metaproteomic analysis. Methods were developed to extract bacterial cellular protein from these sediments, as outlined below. Sample Description Three sediments samples were collected from beneath Hydrate Ridge, off the coast of Oregon, USA. Sediments were cored at ODP site 1244 (44°35.1784´N; 125°7.1902´W; 895 m water depth) on the eastern flank of Hydrate Ridge ~3 km northeast of the southern summit on ODP Leg 204 in 2002 and stored at -80°C at the IODP Gulf Coast Repository. E10H5 sediment is from 68.5 meters below sediment surface interface C1H2 sediment is from 2 meters below sediment surface interface. C3H4 sediment is from 21 meters below sediment surface interface.
Project description:Soybean toxin (SBTX) is an antifungal protein from soybeans with broad growth and filamentation inhibitory activity against many fungi, including human and plant pathogenic species such as Candida albicans, Candida parapsilosis, Aspergillus niger, Penicillium herquei, Cercospora sojina, and Cerospora kikuchii. Understanding the mechanism by which SBTX acts on fungi and yeasts may contribute towards the design of novel antifungal drugs and/or for the development of transgenic plants resistant to pathogens. To gain new insights into the mode of action of SBTX, the polymorphic yeast C. albicans was chosen as a model organism, and changes in the gene expression profile of strain SC5314 upon exposure to SBTX were examined. Genes that were differentially regulated in the presence of SBTX were involved in glucose transport and starvation-associated stress responses, as well as in the control of both the induction and repression of C. albicans hyphal formation. Transmission electron microscopy showd that C. albicans cells exposed to SBTX displayed severe signs of starvation and were heavily granulated. Our data were indicative of C. albicans cells starving despite sufficient nutrient availability in the medium, and it can therefore be speculated that SBTX blocks nutrient uptake systems. Because neither the starvation signal nor the alkaline response pathway lead to the induction of hyphae, we hypothesise that conflicting signals are transmitted to the complex regulatory network controlling morphogenesis, eventually preventing the filamentation signal from reaching a significant threshold. For transcriptional profiling, the cells were growth in the presence or absence of SBTX (200 M-BM-5gM-bM-^HM-^YmL-1) in SDB/4.The cultures were grown until they reached an OD600 of approximately 0.5, after 16 and 18 h, for untreated and SBTX-treated cells. The cells were harvested by centrifugation (3000M-bM-^@M-"g at 25M-BM-0C), snap-frozen in liquid nitrogen and stored at -80M-BM-0C. Each pair of samples (untreated and SBTX-treated cells) constituted a single experiment, and two biologically independent experiments were carried out.
Project description:We have developed a 60-mer oligonucleotide multibacterial microarray for detection and expression profiling of biodegradative genes and bacterial diversity (16S rRNA gene) in different habitats contaminated with varieties of hazardous chemicals. The genes selected were involved in biodegradation and biotransformation of various groups of compounds viz. nitroaromatic compounds (148 genes), chloroaromatic compounds (75 genes), monoaromatic compounds (373 genes), polyaromatic hydrocarbons (174 genes), pesticides/ herbicides (34 genes), alkanes/aliphatics (185 genes) and heavy metals (68 genes), which covered a total number of 133 chemicals. The efficiency (specificity, detection sensitivity) of the developed array was evaluated using the labeled genomic DNA of pure bacterial strains, Escherichia coli DH5M-NM-1 and Sphingomonas sp. strain NM-05 (involved in the biodegradation of M-NM-3-hexachlorohexane isolated from IPL, Lucknow) at different concentrations of 300ng, 500ng, 800ng, 1000ng and 1250ng. The specificity of the developed array was further validated using mixed cultures containing three strains (Sphingomonas sp. strain NM-05, Rhodococcus sp. strain RHA1 and Bordetella sp. strain IITR-02) involved in biodegradation of M-NM-3-hexachlorohexane, biphenyl and chlorobenzenes respectively. The mixed culture also contained non-target/non-degrader strains (E. coli DHM-NM-1, E.coli BL21 and E.coli K12 NCTC50192). The developed array was applied for profiling using the total soil DNA in five contaminated habitats of north India, viz. chloroaromatic chemicals contaminated site (India Pesticide Limited, Chinhat, Lucknow), a river sediments (Gomti river sediment, Lucknow), heavy metal industry dump site (Jajmau industrial area Kanpur), a effluent treatment plant (CETP along Ganges river near Kanpur), and an oil refinery (Mathura oil refinery). Hybridization of 16S rRNA probes revealed the presence of bacteria similar to well characterized genera involved in biodegradation of pollutants. Genes involved in complete degradation pathways for hexachlorocyclohexane (lin), 1,2,4-trichlorobenzene (tcb), naphthalene (nah), phenol (mph), biphenyl (bph), benzene (ben), toluene (tbm), xylene (xyl), phthalate (pht), Salicylate (sal) and resistance to mercury (mer) were detected with highest intensity. The most abundant genes belonged to hydroxylases, monooxygenases and dehydrogenases which were present in all the five samples. Many compound specific genes which initiate the degradation pathway were also detected. Thus, the array developed and validated here may be useful in assessing the biodegradative potential and composition of environmentally useful bacteria in hazardous ecosystems. Agilent one-color CGH experiment,Organism: Genotypic designed Agilent-17159 Genotypic designed Agilent Multibacterial 8x15k Array , Labeling kit: Agilent Genomic DNA labeling Kit (Part Number: 5190-0453)
Project description:In mammals, the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II consists of 52 conserved heptapeptide repeats containing the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Post-translational modifications of the CTD coordinate the transcription cycle and various steps of mRNA maturation. Here we describe Tyr1 phosphorylation (Tyr1P) as a hallmark of initiating Pol II in mammalian cells, in contrast to what was described in yeast. Tyr1P is predominantly found in antisense orientation at promoters but is also specifically enriched at active enhancers. Mutation of Tyr1 to phenylalanine (Y1F) prevents the formation of the hyper-phosphorylated Pol IIO form, induces degradation of Pol II to the Pol IIB form and results in a lethal phenotype. Our results suggest that Tyr1P has evolved specialized and essential functions in higher eukaryotes associated with antisense promoter and enhancer transcription, and Pol II stability. This study was performed in a human Raji cell line. It contains ChIP-seq data for H3K36me3 (two replicates), H3K4me1 (two replicates), H3K4me3 (two replicates), Pol II (three replicates), Ser2P (two replicates), Ser5P (two replicates), Ser7P (two replicates), Tyr1P 3D12 (two replicates) and Tyr1P 8G5 (one replicate). MNase-experiment for nucleosomes was performed in paired-end sequencing on one replicate, 4 replicates for the input genomic DNA was used and one replicate was generated for the short strand specific RNA experiment.