In plants, decapping prevents RDR6-dependent production of small interfering RNAs from endogenous mRNAs
Ontology highlight
ABSTRACT: Background: Cytoplasmic degradation of endogenous RNAs is an integral part of RNA quality control (RQC) and often relies on the removal of the 5' cap structure and their subsequent 5M-bM-^@M-^Y to 3M-bM-^@M-^Y degradation. In parallel, many eukaryotes degrade exogenous and selected endogenous RNAs through post-transcriptional gene silencing (PTGS). In plants, PTGS depends on small interfering (si)RNAs produced after the conversion of single-stranded RNAs to double-stranded RNAs by the cellular RNA DEPENDENT RNA POLYMERASE 6 (RDR6). PTGS and RQC compete for transgene-derived RNAs, but it is unknown whether this competition also occurs for endogenous transcripts. Results: We show that that upon decapping impairment hundreds of endogenous mRNAs give rise to a new class of siRNAs, a subset of which depends on RDR6 for their production. Conclusions: Our results suggest that the decapping of aberrant endogenous RNA in P-bodies limits their entry into the PTGS pathway and prevents the subsequent deleterious consequences arising from this entry. We anticipate that the siRNAs identified in decapping mutants represent a subset of a larger ensemble of endogenous siRNAs that we coin rqc-siRNAs because they accumulate when RQC processes are impaired. Small RNA-seq experiments performed in duplicates for each condition.
ORGANISM(S): Arabidopsis thaliana
SUBMITTER: Alexis Maizel
PROVIDER: E-GEOD-65056 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA