Reciprocal interaction of Wnt and RXR-α pathways in hepatocyte development and hepatocellular carcinoma
Ontology highlight
ABSTRACT: Genomic analysis of human hepatocellular carcinoma (HCC) is potentially confounded by the differentiation state of the hepatic cell-of-origin. Here we integrated genomic analysis of mouse HCC (with defined cell-of-origin) along with normal liver development. We found a major shift in expression of Wnt and RXR-α pathway genes (up and down, respectively) coincident with the transition from hepatoblasts to hepatocytes. A combined Wnt and RXR-α gene signature categorized HCCs into two subtypes (high Wnt, low RXR-α and low Wnt, high RXR-α), which matched cell-of-origin in mouse models and the differentiation state of human HCC. Suppression of RXR-α levels in hepatocytes increased Wnt signaling and enhanced tumorigenicity, whereas ligand activation of RXR-α achieved the opposite. These results corroborate that there are two main HCC subtypes that correspond to the degree of hepatocyte differentation and that RXR-α, in part via Wnt signaling, plays a key functional role in the hepatocyte-like subtype and potentially could serve as a selective therapeutic target. Total RNA from whole livers taken at different developmental timepoints (embryonic day 14, embryonic day 18, post-natal day 5 and post-natal day 56) along with hepatoblasts isolated from E14 livers and immature hepatocytes isolated from E18 livers was extracted and purified using the Qiagen RNeasy Mini Kit. RNA purity and integrity were assayed by the Bioanalyser 2100 (Agilent Technologies). For each sample, 2 µg of total RNA was reverse transcribed and amplified by using an RNA amplification kit from Ambion. Fifteen micrograms of amplified RNA were labeled by direct chemical coupling to the Cy5 NHS ester (Amersham Biosciences). Normal adult mouse liver (Agilent) was used as control and Cy3 labeled. Labeled RNAs were purified, fragmented, and used as probes to hybridize microarrays. Gene expression profiling was done with the 4x44k mouse Agilent platform. Expression profiling of the 23 human HCC samples was previously described
ORGANISM(S): Mus musculus
SUBMITTER: Jinyu Li
PROVIDER: E-GEOD-65063 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA