Project description:Microarray analysis was used to identify changes in the level of transcription of genes in P. aeruginosa drip flow biofilms in response to ciprofloxacin and tobramycin exposure. This data was evaluated and used to select strains that carry transposon mutations in genes that might play a role in antibiotic tolerance of biofilms. The strains were evaluated for defects in biofilm tolerance. Four drip flow biofilm conditions with three replicates each: (1) baseline controls at 72 hours, (2) tobramycin treated for 12 hours past baseline, (3) ciprofloxacin treated for 12 hrs past baseline, and (4) no treatment for 12 hrs past baseline.
Project description:Transcriptome analysis was applied to characterize the physiological activities of Psuedomonas aeruginosa cells grown for three days in drip flow biofilm reactors when compared to the activities of P. aeruginosa grown planktonically to exponential phase in the same media. Here, rather than examining the effect of an individual gene on biofilm antibiotic tolerance, we used a transcriptomics approach to identify regulons and groups of related genes that are induced during biofilm growth of Pseudomonas aeruginosa. We then tested for statistically significant overlap between the biofilm-induced genes and independently compiled gene lists corresponding to stress responses and other putative antibiotic protective mechanisms. This data was evaluated and used to select strains that carry transposon mutations in genes that might play a role in antibiotic tolerance of biofilms. The strains were evaluated for defects in biofilm tolerance. One planktonic condition with four biological replicates; One drip flow biofilm condition grown for 72 hours with three biological replicates; One drip flow biofilm condition grown for 84 hours with three biological replicates.
Project description:Abstract: Transcriptome analysis was applied to characterize the physiological activities of Pseudomonas aeruginosa grown for three days in drip-flow biofilm reactors. Conventional applications of transcriptional profiling often compare two paired data sets that differ in a single experimentally controlled variable. In contrast this study obtained the transcriptome of a single biofilm state, ranked transcript signals to make the priorities of the population manifest, and compared rankings for a priori identified physiological marker genes between the biofilm and published data sets. Two drip flow biofilm conditions with three replicates each: (1) baseline control at 72hrs, (2) no treatment for 12 hours past baseline. Data from these two conditions were pooled
Project description:The physiological and transcriptional response of Nitrosomonas europaea biofilms to phenol and toluene was examined and compared to suspended cells. Biofilms were grown in Drip Flow Biofilm Reactors under continuous flow conditions of growth medium containing ammonia as growth substrate. The responses of N. europaea biofilms to the aromatic hydrocarbons phenol and toluene were determined during short-term (3 h) additions of each compound to the biofilms. Ammonia oxidation in the biofilms was inhibited 50% by 60 uM phenol and 100 uM toluene. These concentrations were chosen for microarray analysis of phenol- and toluene-exposed N. europaea biofilms. Liquid batch cultures of exponentially growing N. europaea cells were harvested alongside the biofilms to determine differential gene expression between attached and suspended growth of N. europaea. Four sample groups of N. europaea cells were used in this study, with biological triplicates of each group. Groups were: Control (untreated) biofilms, phenol-exposed biofilms, toluene-exposed biofilms, and exponentially growing suspended cells. Biofilms were grown in Drip Flow Biofilm Reactors containing 4 independent growth channels and subject to 2 hour inhibition tests. During each experiment, 2 biofilm channels served as control with no inhibitor present and the other 2 biofilm channels were exposed to either 60 uM phenol or 100 uM toluene. Nitrite production was monitored throughout the experiment, and the given concentrations of phenol and toluene resulted in 50% inhibition of ammonia oxidation by the biofilms. Suspended cells were grown in batch reactors. Three 4-plex NimbleGen microarray chips were used, and each chip contained one sample from each experimental group. QC of samples was determined by spectrophotometric methods and using Agilent bioanalyzer traces to determine purity and integrity of RNA and cDNA. A sample tracking report was used to verify the correct hybridization of each sample to the intended array.
Project description:Microorganisms form biofilms containing differentiated cell populations. To determine factors driving differentiation, we study protein distributions in bacterial biofilms using shotgun proteomics. Notably, zinc- and manganese-depleted portions of the biofilm repress the production of anti-staphylococcal molecules. Exposure to calprotectin (a host protein known to sequester metal ions at infectious foci) recapitulates responses occurring within metal-deplete portions of the biofilm and promotes interaction between P. aeruginosa and Staphylococcus aureus. Consistent with these results, the presence of calprotectin promotes co-colonization of the murine lung, and polymicrobial communities are found to co-exist in calprotectin-enriched airspaces of a cystic fibrosis lung explant. These findings, which demonstrate that metal fluctuations are a driving force of microbial community structure, have clinical implications because of the frequent occurrence of P. aeruginosa and S. aureus co-infections.
Project description:LD13 mutant was considered for this analysis since it generated mushroom-type mature biofilm. This strain looses 17.6% of parental chromosome and lacks of several bacterial surface structures/genes but still has some novel autoaggregation genes. The global gene-expression profiles of LD13 flow-cell biofilm were compared after 24, 48, 72, 96, and 144 hr, respectively, as well as with those of LD13 planktonic cultures.
Project description:The lesions of enamel caries can be considered as the outcome of dysbiotic changes in the biofilm community of supragingival dental plaque. Demineralization occurs as the cumulative outcome of repeated shifts towards a less diverse microbiota that produces and tolerates a low pH environment in tooth sites that are sheltered from protective factors in host saliva. Although the etiology of caries is multifactorial, frequent consumption of foods rich in fermentable carbohydrates, notably sucrose, appears to be one of the major factors driving the microbiota in the direction of dysbiosis, particularly in the case of otherwise healthy children with normal salivary flow. Streptococcus mutans and closely related species (such as Streptococcus sobrinus) have long been considered to play a primary etiological role in dental caries. S. mutans responds to sucrose by producing large quantities of lactic acid. It is very tolerant of low pH, and produces an insoluble extracellular polysaccharide that may sequester acid at tooth surfaces. The mechanisms behind those putative virulence factors have been intensively studied in monoculture, and recently in simple multi-species consortia. Much less is known of other species that may also contribute to or protect against dysbiosis driven by dietary carbohydrates. Some strains of “non-mutans” streptococci produce and tolerate acid at levels comparable to S. mutans, while others show increased ariginolytic capabilities, which may act to raise pH within the biofilm matrix. S. mutans tends to be a minority species even in caries-active children, and carious lesions likewise can occur in children with no detectable S. mutans. 16S rDNA-based metagenomic comparisons of caries-active and caries-free subjects have detected associations between caries and a variety of oral species, including not only non-mutans streptococci, but also members of other genera, such as Scardovia and Bifidobacterium. Caries associations have not been consistent between studies. Moreover, different taxonomic clusters have been defined as subgroups within the same study. This raises an important point. Although caries-associated communities are typically less diverse than healthy supragingival plaque overall, those dysbiotic communities still display considerable taxonomic diversity between affected individuals. That in turn raises the question of whether it is desirable to define biomarkers of dysbiosis that are less dependent on taxonomy. The Human Microbiome project generated comprehensive metagenomic data for a wide variety of body sites in healthy subjects, including supragingival plaque. Although most of that data was based on 16S rDNA sequencing, shotgun metagenomics was also used to catalog the functional potential of all microbial genes within a smaller subset of subjects. One of the key findings was that healthy sites from different people were broadly similar with respect to their functional profiles, even though there was extensive individual variation in their taxonomic profiles. It is possible that the “conservation of function” concept may also extend to dysbiotic communities. This would explain why microbial communities associated with caries still show considerable taxonomic variation. In that case, differential patterns of community-wide gene and/or protein expression might provide a more accurate indicator of dysbiosis than can be achieved by counting caries-associated species. Metatranscriptomic or metaproteomic approaches can be used to provide information on function. A recent metatranscriptomic comparison of subgingival plaque from healthy and periodontally diseased sites in three subjects has provided data that support the “conservation of function” concept. They observed that taxonomically diverse diseased sites shared conserved gene expression profiles [20]. By the same token, a recent metaproteomic comparison of gut microbiotas from healthy controls to Crohn’s disease patients found that major shifts in protein expression by function did not always correlate with changes in taxon relative abundance [21]. In this metaproteomic study, we found that sucrose–induced changes in protein expression patterns for pathways involving glycolysis, lactate production, aciduricity and ammonia/glutamate metabolism were likewise conserved in taxonomically diverse dysbiotic oral microcosm biofilm communities.
Project description:Host cell proteins are inevitable contaminants of biopharmaceuticals. Here, we performed detailed analyses of the host cell proteome of moss (Physcomitrella patens) bioreactor supernatants using mass spectrometry and subsequent bioinformatics analysis. Distinguishing between the apparent secretome and intracellular contaminants, a complex extracellular proteolytic network including subtilisin-like proteases, metallo-proteases and aspartic proteases was identified. Further, we confirmed predicted cleavage sites of 40 endogenous signal peptides employing an N-terminomics approach.
Project description:A hallmark of the biofilm architecture is the presence of microcolonies. However, little is known about the underlying mechanisms governing microcolony formation. In the human pathogen Pseudomonas aeruginosa, microcolony formation is dependent on the two-component regulator MifR, with mifR mutant biofilms exhibiting an overall thin structure lacking microcolonies, and overexpression of mifR resulting in hyper-microcolony formation. Here, we made use of the distinct MifR-dependent phenotypes to elucidate mechanisms associated with microcolony formation. Using global transcriptomic and proteomic approaches, we demonstrate that cells located within microcolonies experience stressful, oxygen limited, and energy starving conditions, as indicated by the activation of stress response mechanisms and anaerobic and fermentative processes, in particular pyruvate fermentation. Inactivation of genes involved in pyruvate utilization including uspK, acnA and ldhA abrogated microcolony formation in a manner similar to mifR inactivation. Moreover, depletion of pyruvate from the growth medium impaired biofilm and microcolony formation, while addition of pyruvate significantly increased microcolony formation. Addition of pyruvate partly restored microcolony formation in M-bM-^HM-^FmifR biofilms. Moreover, addition of pyruvate to or expression of mifR in lactate dehydrogenase (ldhA) mutant biofilms did not restore microcolony formation. Consistent with the finding of denitrification genes not demonstrating distinct expression patterns in biofilms forming or lacking microcolonies, addition of nitrate did not alter microcolony formation. Our findings indicate the fermentative utilization of pyruvate to be a microcolony-specific adaptation to the oxygen limitation and energy starvation of the P. aeruginosa biofilm environment. For biofilm growth experiments, three independent replicates of P. aeruginosa strains PAO1 and M-NM-^TmifR were grown as biofilms in a flow-through system using a once-through continuous flow tube reactor system for biofilm sample collection and in flow cells (BioSurface Technologies) for the analysis of biofilm architecture as previously described (Sauer et al., 2002, Sauer et al., 2004, Petrova & Sauer, 2009). Cells were treated with RNAprotect (Qiagen) and total RNA was extracted using an RNeasy mini purification kit (Qiagen) per the manufacturerM-bM-^@M-^Ys instructions. RNA quality and the presence of residual DNA were checked on an Agilent Bioanalyzer 2100 electrophoretic system pre- and post-DNase treatment. Ten micrograms of total RNA was used for cDNA synthesis, fragmentation, and labeling according to the Affymetrix GeneChip P. aeruginosa genome array expression analysis protocol. Sauer, K., A. K. Camper, G. D. Ehrlich, J. W. Costerton & D. G. Davies, (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154. Sauer, K., M. C. Cullen, A. H. Rickard, L. A. H. Zeef, D. G. Davies & P. Gilbert, (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 186: 7312-7326. Petrova, O. E. & K. Sauer, (2009) A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathogens 5: e1000668.