ABSTRACT: Background: In present study we performed whole transcriptome analysis in plaque psoriasis patients and compared lesional skin with non-lesional skin and with the skin from healthy controls. We sequenced total RNA from 12 lesional (LP), 12 non-lesional (NLP) and from 12 normal (C) skin biopsies. Results: Compared with previous gene expression profiling studies we had three groups under analysis - LP, NLP and C. Using NLP samples allows to see the transcriptome of visually normal skin from psoriasis patient. In LP skin S100A12, S100A7A, LCE3E, DEFB4A, IL19 were found up regulated. In addition to already well-described genes, we also found several other, not so widely recognized transcripts, related to psoriasis. Namely, KLK9, OAS2, OAS3, PLA2G, IL36G, IL36RN were found to be significantly and consistently related to the psoriatic lesions. Ingenuity pathway analysis was used to define functional networks significantly enriched in the studied samples. The genes up-regulated in the LP samples were related to the innate immunity, IL17 and IL10 networks. In NLP samples innate immunity and IL17 network were activated, but activation of IL10 network was not evident. The transcriptional changes characteristic in the NLP samples can be considered as a molecular signature of “dormant psoriasis”. Conclusions: Taken together, our study described the transcriptome profile characteristic for LP and NLP psoriatic skin. RNA profile of the NLP skin is in between the lesional and healthy skin, with its own specific pattern. We found that both LP and NLP have up-regulated IL17 network, whereas LP skin has up regulated IL10 related cytokines (IL19, IL20, IL24). Moreover, IL36G and IL36RN were identified as strong regulators of skin pathology in both LP and NLP skin samples, with stronger influence in LP samples. 36 samples, 24 from psoriasis and 12 from controls