Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Controlled measurement and comparative analysis of cellular components in E. coli reveals broad regulatory changes under long-term starvation


ABSTRACT: How do bacteria regulate their cellular physiology in response to starvation? Here, we present a detailed characterization of Escherichia coli growth and starvation over a time-course lasting two weeks. We have measured multiple cellular components, including RNA and proteins at deep genomic coverage, as well as lipid modifications and flux through central metabolism. Our study focuses on the physiological response of E. coli to starvation, not on the genetic adaptation of E. coli to utilize alternative nutrients. In our analysis, we have taken advantage of the temporal correlations within and among RNA and protein abundances to identify systematic trends in gene regulation. Specifically, we have developed a general computational strategy for classifying expression-profile time courses into distinct categories in an unbiased manner. We have also developed, from dynamic models of gene expression, a framework to characterize protein degradation patterns based on the observed temporal relationships between mRNA and protein abundances. By comparing and contrasting our transcriptomic and proteomic data, we have identified several broad physiological trends in the E. coli starvation response. Strikingly, mRNAs are widely down-regulated in response to glucose starvation, presumably as a strategy for reducing new protein synthesis. By contrast, protein abundances display more varied responses. The abundances of many proteins involved in energy-intensive processes mirror the corresponding mRNA profiles while proteins involved in nutrient metabolism remain abundant even though their corresponding mRNAs are down-regulated. Time course of E. coli growth and starvation in glucose-limited minimal medium

ORGANISM(S): Escherichia coli

SUBMITTER: Jeffrey Barrick 

PROVIDER: E-GEOD-67402 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2015-03-31 | GSE67402 | GEO
2023-12-29 | E-MTAB-12794 | biostudies-arrayexpress
2021-04-16 | E-MTAB-9655 | biostudies-arrayexpress
2011-06-13 | E-GEOD-26385 | biostudies-arrayexpress
2011-06-13 | E-GEOD-26384 | biostudies-arrayexpress
2019-04-04 | E-MTAB-7643 | biostudies-arrayexpress
2015-11-02 | GSE40028 | GEO
2010-06-25 | E-GEOD-11300 | biostudies-arrayexpress
2024-09-02 | BIOMD0000000633 | BioModels
2011-05-24 | GSE29439 | GEO