Generation of neural progenitor cells by chemical cocktails and hypoxia
Ontology highlight
ABSTRACT: Neural progenitor cells (NPCs) can be induced from somatic cells by defined factors. Here we report that NPCs can be generated from mouse embryonic fibroblasts by a chemical cocktail, namely VCR (V, VPA, an inhibitor of HDACs; C, CHIR99021, an inhibitor of GSK-3 kinases and R, Repsox, an inhibitor of TGF-β pathways), under a physiological hypoxic condition. These chemical-induced NPCs (ciNPCs) resemble mouse brain-derived NPCs regarding their proliferative and self-renewing abilities, gene expression profiles, and multipotency for different neuroectodermal lineages in vitro and in vivo. Further experiments reveal that alternative cocktails with inhibitors of histone deacetylation, glycogen synthase kinase, and TGF-β pathways show similar efficacies for ciNPC induction. Moreover, ciNPCs can also be induced from mouse tail-tip fibroblasts and human urinary cells with the same chemical cocktail VCR. Thus our study demonstrates that lineage-specific conversion of somatic cells to NPCs could be achieved by chemical cocktails without introducing exogenous factors. To access the exact identity of ciNPCs, we extracted mRNA from mouse brain-derived NPCs (as control NPCs), MEFs, ciNPCs at passage 5 and passage 13 and compared the global gene expression patterns of these cells by microarray analysis.
ORGANISM(S): Mus musculus
SUBMITTER: Lin Cheng
PROVIDER: E-GEOD-68311 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA