Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana [ChIP-Seq]


ABSTRACT: Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are not enhanced, unlike the response in the wild type, by drought-like treatments. Genome-wide analyses revealed increased H3T3ph, slight enhancement in trimethylated histone H3 lysine 4 (H3K4me3), and a modest decrease in histone H3 occupancy in pericentromeric/knob regions of wild type plants under osmotic stress. However, despite these changes in heterochromatin, transposons and repeats remained largely transcriptionally repressed. In contrast, this reorganization of heterochromatin was mostly absent in the double mutant, which even under normal conditions exhibited lower H3T3ph levels in pericentromeric regions, and a few transposons and repeat sequences showed modest transcriptional activation. Interestingly, within actively transcribed protein-coding genes, H3T3ph density was minimal in 5’ genic regions, coincidental with a peak of H3K4me3 accumulation. This pattern was not affected in the double mutant, implying the existence of additional H3T3 protein kinases in Arabidopsis. Our results suggest that At3g03940 and At5g18190 are involved in the phosphorylation of H3T3 in pericentromeric/knob regions and that this repressive epigenetic mark may be important for maintaining proper heterochromatic organization and, possibly, chromosome function(s). Columbia-0 and double mutant at3g03940/at518190 knockdown plants were grown in 12 hr light for 3 weeks in pots with soil covered with miracloth to prevent soil contamination of leaf tissues. Control was kept in normal watered state, for other samples (peg) drought stress was induced by treatment with 30% Polyethylene glycol (PEG 6,000) for 5 hours. Pulldowns on H3, H3K4, and H3T3 were performed on all samples with 3-4 replicates.

ORGANISM(S): Arabidopsis thaliana

SUBMITTER: Jean-Jack Riethoven 

PROVIDER: E-GEOD-68370 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana.

Wang Zhen Z   Casas-Mollano Juan Armando JA   Xu Jianping J   Riethoven Jean-Jack M JJ   Zhang Chi C   Cerutti Heriberto H  

Proceedings of the National Academy of Sciences of the United States of America 20150622 27


Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are  ...[more]

Similar Datasets

2015-07-22 | E-GEOD-68439 | biostudies-arrayexpress
2015-07-22 | GSE68439 | GEO
2015-07-22 | GSE68370 | GEO
2015-06-22 | E-GEOD-57574 | biostudies-arrayexpress
2008-10-31 | E-GEOD-11004 | biostudies-arrayexpress
2015-06-22 | E-GEOD-57575 | biostudies-arrayexpress
2015-06-22 | E-GEOD-57576 | biostudies-arrayexpress
2017-05-01 | E-GEOD-50110 | biostudies-arrayexpress
2015-06-22 | GSE57576 | GEO
2015-06-22 | GSE57575 | GEO