HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues
Ontology highlight
ABSTRACT: Male reproductive tissues are more sensitive to heat stress compared to vegetative tissues, however the basis of this phenomenon is poorly understood. Heat stress transcription factors (Hsfs) regulate the transcriptional changes required for protection and recovery from heat stress. HsfA2 has been characterized as co-activator of HsfA1a in tomato and is considered as one of the major Hsfs accumulating in response to elevated temperatures. The role of HsfA2 in heat stress response of different tissues was examined by exploring the composition and structure of the tissue-specific regulatory networks in transgenic tomato plants with suppressed HsfA2 expression (A2AS). Transcriptome analysis revealed that HsfA2 acts in condition- and tissue-specific manner and that only a subset of heat stress induced genes require HsfA2 for higher expression. Remarkably, although HsfA2 is not essential for thermotolerance in seedlings and flowering plants, it is required for maintenance pollen viability under stress conditions. We show that the activation of Hsf networks is important for the developmentally regulated priming of heat stress response occurring at early stages of anther and pollen development. Thereby, HsfA2 is involved in pollen thermotolerance by directly regulating heat stress responsive genes but also by stimulating the synthesis of molecular chaperones under non-stress conditions. 8 samples
ORGANISM(S): Solanum lycopersicum
SUBMITTER: Enrico Schleiff
PROVIDER: E-GEOD-68500 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA