Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution.
Ontology highlight
ABSTRACT: Chronic endoplasmic reticulum (ER) stress results in toxicity that contributes to multiple human disorders. We report a stress resolution pathway initiated by the nuclear receptor LRH-1 that is independent of known unfolded protein response (UPR) pathways. Like mice lacking primary UPR components, hepatic Lrh-1-null mice cannot resolve ER stress, despite a functional UPR. In response to ER stress, LRH-1 induces expression of the kinase Plk3, which phosphorylates and activates the transcription factor ATF2. Plk3-null mice also cannot resolve ER stress, and restoring Plk3 expression in Lrh-1-null cells rescues ER stress resolution. Reduced or heightened ATF2 activity also sensitizes or desensitizes cells to ER stress, respectively. LRH-1 agonist treatment increases ER stress resistance and decreases cell death. We conclude that LRH-1 initiates a novel pathway of ER stress resolution that is independent of the UPR, yet equivalently required. Targeting LRH-1 may be beneficial in human disorders associated with chronic ER stress. 24 total samples. One sample represents one mouse. Three samples were analyzed from the following groups: Lrh-1 f/f (control littermates) treated with vehicle, Lrh-1 f/f treated with tunicamycin (TM; 1mg/kg BW for 24h), Lrh-1 f/f treated with tunicamycin and DLPC (100mg/kg BW 4x), Lrh-1 f/f treated with tunicamycin and vehicle for DLPC, Lrh-1 liver-specific KO mice (LKO) treated with vehicle, Lrh-1 LKO treated with tunicamycin, and Lrh-1 LKO treated with tunicamycin and DLPC, Lrh-1 LKO treated with tunicamycin and vehicle for DLPC
ORGANISM(S): Mus musculus
SUBMITTER: Jennifer Mamrosh
PROVIDER: E-GEOD-68718 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA