CDK7-dependent Transcriptional Addiction in Triple-Negative Breast Cancer (Microarray)
Ontology highlight
ABSTRACT: Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer that exhibits extremely high levels of genetic complexity and yet a relatively uniform transcriptional program. We postulate that TNBC might be highly dependent on uninterrupted transcription of a key set of genes within this gene expression program and might therefore be exceptionally sensitive to inhibitors of transcription. Utilizing a novel kinase inhibitor and CRISPR/Cas9-mediated gene editing, we show here that triple-negative but not ER/PR+ breast cancer cells are exceptionally dependent on CDK7, a transcriptional cyclin-dependent kinase. TNBC cells are unique in their dependence on this transcriptional CDK and suffer apoptotic cell death upon CDK7 inhibition. An “Achilles cluster” of TNBC-specific genes are extremely sensitive to CDK7 inhibition and frequently associated with super-enhancers. We conclude that CDK7 mediates transcriptional addiction to a vital cluster of genes in TNBC and CDK7 inhibition may be useful therapy for this challenging cancer. Expression microarrays in H3K27ac in triple-negative breast cancer +/- treatment with covalent CDK7 inhibitor THZ1 treatment
ORGANISM(S): Homo sapiens
SUBMITTER: Richard Young
PROVIDER: E-GEOD-69106 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA