Oncogenic deregulation of EZH2 as an opportunity for targeted therapy in lung cancer [RNA-Seq]
Ontology highlight
ABSTRACT: As a master regulator of chromatin structure and function, the EZH2 lysine methyltransferase orchestrates transcriptional silencing of developmental gene networks. Overexpression of EZH2 is commonly observed in human epithelial cancers, such as non- small cell lung carcinoma (NSCLC), yet definitive demonstration of malignant transformation by deregulated EZH2 has proven elusive. Here, we demonstrate the causal role of EZH2 overexpression in NSCLC with a new genetically-engineered mouse model of lung adenocarcinoma. Deregulated EZH2 silences normal developmental pathways leading to epigenetic transformation independent from canonical growth factor pathway activation. As such, tumors feature a transcriptional program distinct from KRAS- and EGFR-mutant mouse lung cancers, but shared with human lung adenocarcinomas exhibiting high EZH2 expression. To target EZH2-dependent cancers, we developed a novel and potent EZH2 inhibitor that arises from a facile synthesis and possesses improved pharmacologic properties. JQEZ5 promoted the regression of EZH2-driven tumors in vivo, confirming oncogenic addiction to EZH2 in established tumors and providing the rationale for epigenetic therapy in a defined subset of lung cancer. Gene expression analysis of 7 samples, 3 EZH2 OE tumors, 2 EZH2 OE normal lung samples, and 2 WT lung samples
ORGANISM(S): Mus musculus
SUBMITTER: James Bradner
PROVIDER: E-GEOD-70046 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA