Transcription profiling of human skin fibroblasts to low and high doses of UVC radiation to assess cellular transcriptional responses to UVC-induced DNA damage
Ontology highlight
ABSTRACT: DNA damage caused by UV radiation initiates cellular recovery mechanisms, which involve activation of DNA damage response pathways, cell cycle arrest and apoptosis. To assess cellular transcriptional responses to UVC-induced DNA damage we compared time course responses of human skin fibroblasts to low and high doses of UVC radiation known to induce a transient cellular replicative arrest or apoptosis, respectively. UVC radiation elicited >3-fold changes in 460 out of 12,000 transcripts and 89% of these represented downregulated transcripts. Only 5% of the regulated genes were common to both low and high doses of radiation. Cells inflicted with a low dose of UVC exhibited transcription profiles demonstrating transient regulation followed by recovery, whereas the responses were persistent after the high dose. A detailed clustering analysis and functional classification of the targets implied regulation of biologically divergent responses and suggested involvement of transcriptional and translational machinery, inflammatory, anti-proliferative and anti-angiogenic responses. The data support the notion that UVC radiation induces prominent, dose-dependent downregulation of transcription. However, the data strongly suggest that transcriptional repression is also target gene selective. Furthermore, the results demonstrate that dose-dependent induction of cell cycle arrest and apoptosis by UVC radiation are transcriptionally highly distinct responses.
ORGANISM(S): Homo sapiens
DISEASE(S): radiation-induced DNA damage
SUBMITTER: Massimiliano Gentile
PROVIDER: E-GEOD-713 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA