The Poly(C) binding protein Pcbp2, and its retrotransposed derivative Pcbp1, are independently essential to mouse development
Ontology highlight
ABSTRACT: RNA-binding proteins participate in a complex array of post-transcriptional controls essential to cell-type specification and somatic development. Despite their detailed biochemical characterizations, the degree to which each RNA-binding protein impacts on mammalian embryonic development remains incompletely defined and the level of functional redundancy among subsets of these proteins remains open to question. The poly-(C) binding proteins, Pcbp's (aCPs, hnRNPEs), are encoded by a highly conserved and broadly expressed gene family. The two major Pcbp isoforms, Pcbp2 and Pcbp1, are robustly expressed in a wide range of tissues and exert both nuclear and cytoplasmic controls over gene expression. Here we report that Pcbp1-null embryos are rendered nonviable in the peri-implantation stage. In contrast, Pcbp2-null embryos survive until mid-gestation at which time they undergo a loss in viability associated with cardiovascular and hematopoietic abnormalities. Adult mice heterozygous for either Pcbp1 or Pcbp2 null alleles display a mild and non-disruptive growth defect. These data reveal that Pcbp1 and Pcbp2 are individually essential for mouse embryonic development and post-natal growth, reveal a non-redundant in vivo role for Pcpb2 in hematopoiesis, and provide direct evidence that Pcbp1, a retrotransposed derivative of Pcpb2, has evolved essential function(s) in the mammalian genome. mRNA-seq on fetal liver tissue from 12.5 days post coitum. 4 replicates of WT and 3 replicates of PCBP2 Knockout
ORGANISM(S): Mus musculus
SUBMITTER: Ian Silverman
PROVIDER: E-GEOD-72491 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA