MicroRNA profiles in Parkinsonâ??s disease prefrontal cortex
Ontology highlight
ABSTRACT: Objective. The goal of this study was to examine the microRNA (miRNA) profile of Parkinsonâ??s disease (PD) frontal cortex as compared to normal control brain, allowing for the identification of PD specific signatures as well as the study of disease-related phenotypes, such as onset age or dementia Methods. Small RNA sequence analysis was performed from prefrontal cortex for 29 PD samples and 33 control samples. After sample QC, normalization and batch correction, linear regression was used to identify miRNAs altered in PD, and a PD classifier was developed using weighted voting class prediction. The relationship of miRNA levels to onset age and PD with dementia (PDD) was also characterized in case-only analyses. Results. 125 miRNAs were differentially expressed in PD at a genome-wide level of significance (FDR q<0.05). A set of 29 miRNAs classified PD from non-diseased brain (93.9% specificity, 96.6% sensitivity). The majority of differentially expressed miRNAs (105/125) showed an ordinal relationship from control, to PD without dementia (PDN), to PDD. Among PD brains, 36 miRNAs classified PDD from PDN (sensitivity =81.2%, specificity =88.9%). Among differentially expressed miRNAs, miR-10b-5p had a positive association with onset age (q=4.7e-2). Conclusions. Based on cortical miRNA levels, PD brains were accurately classified from non-diseased brains. Additionally, the PDD miRNA profile exhibited a more severe pattern of alteration among those differentially expressed in PD. To evaluate the clinical utility of miRNAs as potential clinical biomarkers, further characterization and testing of brain-related miRNA alterations in peripheral biofluids is justified. 29 Parkinson's disease prefrontal cortex samples analyzed with 33 control samples from Series GSE64977.
Project description:Objective. The goal of this study was to examine the microRNA (miRNA) profile of Parkinson’s disease (PD) frontal cortex as compared to normal control brain, allowing for the identification of PD specific signatures as well as the study of disease-related phenotypes, such as onset age or dementia Methods. Small RNA sequence analysis was performed from prefrontal cortex for 29 PD samples and 33 control samples. After sample QC, normalization and batch correction, linear regression was used to identify miRNAs altered in PD, and a PD classifier was developed using weighted voting class prediction. The relationship of miRNA levels to onset age and PD with dementia (PDD) was also characterized in case-only analyses. Results. 125 miRNAs were differentially expressed in PD at a genome-wide level of significance (FDR q<0.05). A set of 29 miRNAs classified PD from non-diseased brain (93.9% specificity, 96.6% sensitivity). The majority of differentially expressed miRNAs (105/125) showed an ordinal relationship from control, to PD without dementia (PDN), to PDD. Among PD brains, 36 miRNAs classified PDD from PDN (sensitivity =81.2%, specificity =88.9%). Among differentially expressed miRNAs, miR-10b-5p had a positive association with onset age (q=4.7e-2). Conclusions. Based on cortical miRNA levels, PD brains were accurately classified from non-diseased brains. Additionally, the PDD miRNA profile exhibited a more severe pattern of alteration among those differentially expressed in PD. To evaluate the clinical utility of miRNAs as potential clinical biomarkers, further characterization and testing of brain-related miRNA alterations in peripheral biofluids is justified.
Project description:BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that recognize sites of complementarity of target messenger RNAs, resulting in transcriptional regulation and translational repression of target genes. In Huntington’s disease (HD), a neurodegenerative disease caused by a trinucleotide repeat expansion, miRNA dyregulation has been reported, which may impact gene expression and modify the progression and severity of HD. METHODS: We performed next-generation miRNA sequence analysis in prefrontal cortex (Brodmann Area 9) from 26 HD, 2 asymptomatic HD, and 36 control brains. Neuropathological information was available for all HD brains, including age at disease onset, CAG-repeat size, Vonsattel grade, and Hadzi-Vonsattel striatal and cortical scores, a continuous measure of the extent of neurodegeneration. Linear models were performed to examine the relationship of miRNA expression to these clinical features, and messenger RNA targets of associated miRNAs were tested for gene ontology term enrichment. RESULTS: We identified 75 miRNAs differentially expressed in HD brain (FDR q-value <0.05). Among the HD brains, nine miRNAs were significantly associated with Vonsattel grade of neuropathological involvement and three of these, miR-10b-5p, miR-10b-3p, and miR-302a-3p, significantly related to the Hadzi-Vonsattel striatal score (a continuous measure of striatal involvement) after adjustment for CAG length. Five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-10b-3p, and miR-106a-5p) were identified as having a significant relationship to CAG length-adjusted age of onset including miR-10b-5p, the mostly strongly over-expressed miRNA in HD cases. Although prefrontal cortex was the source of tissue profiled in these studies, the relationship of miR-10b-5p expression to striatal involvement in the disease was independent of cortical involvement. Correlation of miRNAs to the clinical features clustered by direction of effect and the gene targets of the observed miRNAs showed association to processes relating to nervous system development and transcriptional regulation. CONCLUSIONS: These results demonstrate that miRNA expression in cortical BA9 provides insight into striatal involvement and support a role for these miRNAs, particularly miR-10b-5p, in HD pathogenicity. The miRNAs identified in our studies of postmortem brain tissue may be detectable in peripheral fluids and thus warrant consideration as accessible biomarkers for disease stage, rate of progression, and other important clinical characteristics of HD. 26 Huntington's disease, 2 asymptomatic HD gene positive and 49 neurologically normal control prefrontal cortex samples
Project description:We have used microarrays to analyze gene expression in Parkinson’s disease (PD). We used four different brain regions, including two that are relatively affected in PD (striatum and cortex) and two that are relatively spared (cerebellum and medulla). We show that while differences between brain regions are strong, expression profile differences between PD and controls are much more modest and that genome-wide significant differences are restricted to the striatum and cerebral cortex. RNA (aRNA) was generated from 500ng of total RNA from the medulla (n=15 control brains, n=14 PD brains), striatum (n=15 control brains, n = 15 PD brains), frontal cortex (n=15 control brains, n = 11 PD brains) and cerebellum (n = 14 control brains, n=15 PD brains).
Project description:There are many subtypes of dementia, and identification of diagnostic biomarkers that are minimally-invasive, low-cost, and efficient is desired. Circulating microRNAs (miRNAs) have recently gained attention as easily accessible and non-invasive biomarkers. We conducted a comprehensive miRNA expression analysis of serum samples from 1348 Japanese dementia patients, composed of four subtypes—Alzheimer’s disease (AD), vascular dementia, dementia with Lewy bodies (DLB), and normal pressure hydrocephalus—and 246 control subjects. We used this data to construct dementia subtype prediction models based on penalized regression models with the multiclass classification. We constructed a final prediction model using 46 miRNAs, which classified dementia patients from an independent validation set into four subtypes of dementia. Network analysis of miRNA target genes revealed important hub genes, SRC and CHD3, associated with the AD pathogenesis. Moreover, MCU and CASP3, which are known to be associated with DLB pathogenesis, were identified from our DLB-specific target genes. Our study demonstrates the potential of blood-based biomarkers for use in dementia-subtype prediction models. We believe that further investigation using larger sample sizes will contribute to the accurate classification of subtypes of dementia.
Project description:To identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD) Three-way ANOVA of microarray data from frontal cortex, temporal cortex and hippocampus with presence/absence of AD and vascular dementia, and sex, as factors revealed that the gene expression profile is most significantly altered in the hippocampi of AD brains. Comparative analyses of the brains of AD patients and a mouse model of AD showed that genes involved in non-insulin dependent DM and obesity were significantly altered in both, as were genes related to psychiatric disorders and Alzheimer’s disease. We prepared RNA samples from the gray matter of frontal and temporal cortices and hippocampi derived from 88 postmortem brains, among which 26 cases were pathologically diagnosed as having AD or an AD-like disorder. High-quality RNA (RIN≧6.9) samples were subjected to microarray analysis using the Affymetrix Human Gene 1.0 ST platform, and only those results that passed examinations for quality assurance and quality control of the Human Gene 1.0 ST arrays were retrieved. In total, we obtained gene expression profiles from the following samples: 33 frontal cortex samples, among which 15 were from AD patients; 29 temporal cortex samples, among which 10 were from AD patients; 17 hippocampus samples, among which seven were from AD patients
Project description:We have used HiRIEF (High Resolution Isoelectric Focusing) LC-MS proteomics with isobaric tags (TMT10plex) to compare 32 post-mortem human brains in the prefrontal cortex (Brodmann area 9) of prospectively followed patients with Alzheimer`s disease (AD), Parkinson`s disease with dementia (PDD), dementia with Lewy bodies (DLB) and older adults without dementia.
Project description:MicroRNA (miRNA) dysregulation is well-documented in psychiatric disease, but miRNA dynamics during adolescent and early adult brain maturation, when symptoms first appear for many of these diseases, remain poorly understood. Here, we use RNA sequencing to examine miRNAs and their mRNA targets in cortex and hippocampus from early, mid-, and late adolescent and adult mice. We also use Quantitative Proteomics by tandem mass tag mass spectrometry (TMT-MS) to examine protein dynamics in cortex from the same subjects.
Project description:BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that recognize sites of complementarity of target messenger RNAs, resulting in transcriptional regulation and translational repression of target genes. In Huntington’s disease (HD), a neurodegenerative disease caused by a trinucleotide repeat expansion, miRNA dyregulation has been reported, which may impact gene expression and modify the progression and severity of HD. METHODS: We performed next-generation miRNA sequence analysis in prefrontal cortex (Brodmann Area 9) from 26 HD, 2 asymptomatic HD, and 36 control brains. Neuropathological information was available for all HD brains, including age at disease onset, CAG-repeat size, Vonsattel grade, and Hadzi-Vonsattel striatal and cortical scores, a continuous measure of the extent of neurodegeneration. Linear models were performed to examine the relationship of miRNA expression to these clinical features, and messenger RNA targets of associated miRNAs were tested for gene ontology term enrichment. RESULTS: We identified 75 miRNAs differentially expressed in HD brain (FDR q-value <0.05). Among the HD brains, nine miRNAs were significantly associated with Vonsattel grade of neuropathological involvement and three of these, miR-10b-5p, miR-10b-3p, and miR-302a-3p, significantly related to the Hadzi-Vonsattel striatal score (a continuous measure of striatal involvement) after adjustment for CAG length. Five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-10b-3p, and miR-106a-5p) were identified as having a significant relationship to CAG length-adjusted age of onset including miR-10b-5p, the mostly strongly over-expressed miRNA in HD cases. Although prefrontal cortex was the source of tissue profiled in these studies, the relationship of miR-10b-5p expression to striatal involvement in the disease was independent of cortical involvement. Correlation of miRNAs to the clinical features clustered by direction of effect and the gene targets of the observed miRNAs showed association to processes relating to nervous system development and transcriptional regulation. CONCLUSIONS: These results demonstrate that miRNA expression in cortical BA9 provides insight into striatal involvement and support a role for these miRNAs, particularly miR-10b-5p, in HD pathogenicity. The miRNAs identified in our studies of postmortem brain tissue may be detectable in peripheral fluids and thus warrant consideration as accessible biomarkers for disease stage, rate of progression, and other important clinical characteristics of HD.
Project description:To identify unique miRNA profiles in lung carcinomas, we evaluated the expression levels of 723 miRNAs in LCM-selected small cell lung carcinoma(SCLC), adenocarcinoma(AC) and squamous cell carcinoma(SQ) cells derived from 82 snap-frozen surgical specimens using microarrays. Hierarchical clustering analysis showed that 16 of 16 SCLC, 28 of 36 AC, and 29 of 30 SQ were correctly classified using 16 differentially expressed miRNAs.
Project description:Parkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of diseasemodifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular “window” of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.