PIWI slicing and EXD1 drive biogenesis of nuclear piRNAs from cytosolic targets of the mouse piRNA pathway
Ontology highlight
ABSTRACT: PIWI-interacting RNAs (piRNAs) guide PIWI proteins to suppress transposable elements in animal gonads. Here we demonstrate that in the mouse embryonic male germline, endonucleolytic cleavage (slicing) of a transcript by cytosolic MILI acts as a trigger to initiate its further 5??3? processing into non-overlapping fragments. These fragments accumulate as new piRNAs within the nuclear PIWI protein MIWI2. We identify Exonuclease domain-containing 1 (EXD1) as a partner of the established MIWI2 piRNA biogenesis factor TDRD12. Although EXD1 homodimers are inactive as a nuclease, it functions as an RNA adapter within a PET (PIWI-EXD1-Tdrd12) complex. Loss of Exd1 impacts biogenesis of MIWI2 piRNAs and displays a reduction in sequences generated by MILI slicing. This results in selective depletion of repeat piRNAs that target active retrotransposons like LINE1, which are de-repressed in the mutant. We propose that PIWI slicing and EXD1 promote coordination of nucleo-cytoplasmic silencing via piRNA biogenesis. Immunoprecipitated or total small RNAs were purified and sequenced from P0 mouse testis of Exd1+/- and Exd1 -/- mice. Testes of three males were pooled together and MILI and MIWI2 immunoprecipitation was performed or total small RNAs were purified. Two replicas from different pools were prepared. For Rosa26-pi reporter mouse P0 testes of three males were pooled together and MILI and MIWI2 immunoprecipitation was performed.
ORGANISM(S): Mus musculus
SUBMITTER: Ramesh Pillai
PROVIDER: E-GEOD-74423 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA