RNAseq changes in mouse wound with or without time course treatment by Vemurafenib
Ontology highlight
ABSTRACT: BRAF inhibitors are highly effective therapies for patients with BRAF V600 mutated metastatic melanoma. Patients who receive BRAF inhibitors develop a variety of hyper-proliferative skin conditions, whose pathogenic basis is the paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyper-proliferative skin changes improve when a MEK inhibitor is co-administered, as a MEK inhibitor blocks paradoxical MAPK activation. We tested whether we could take advantage of the mechanistic understanding of the skin hyper-proliferative side effects of BRAF inhibitors to accelerate skin wound healing by inducing paradoxical MAPK activation. Here we show that the BRAF inhibitor vemurafenib accelerates human keratinocyte proliferation and migration by increasing ERK phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing models in mice accelerated cutaneous wound healing and improved the tensile strength of healing wounds through paradoxical MAPK activation; addition of a MEK inhibitor reversed the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor did not increase the incidence of cutaneous squamous cell carcinomas in mice even after the application of a carcinogen. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds. Full depth incisional wound mice tissues with/without Vemurafenib treatment were sent for RNAseq analysis on day 2, 6 and 14
ORGANISM(S): Mus musculus
SUBMITTER: Willy Hugo
PROVIDER: E-GEOD-74558 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA