Transcriptome analysis reveals global regulation in response to CO2 supplementation in oleaginous microalga Coccomyxa subellipsoidea C-169
Ontology highlight
ABSTRACT: The microalga Coccomyxa subellipsoidea C-169 possesses some features that may be valuable for lipid production, and, as demonstrated in this study, can be greatly induced to produce a high amount of fatty acid by CO2 supplementation. Here we have compared the transcriptome of air group (AG, cells cultured under 0.04% CO2) and CO2-supplemented group (CG, cells cultured under 2% CO2), and found that dramatic and collaborative regulation in central metabolic pathways as well as biochemical processes occured in response to CO2 supplementation. This study gains a broad understanding of how CO2 stress regulates gene expression and eventually reveals a fine-tuned strategy adopted by C-169 to sustain rapid cell growth and lipid production, which will be helpful for the implementation of biofuels production from oleaginous microalgae. Transcriptomic profiles of Coccomyxa subellipsoidea C-169 cultured for 4 days under two CO2 levels (0.04% and 2%, v/v) were generated by digital gene expression (DGE) analysis, in triplicate, using Illumina Hiseq2000.
ORGANISM(S): Coccomyxa subellipsoidea C-169
SUBMITTER: Huifeng Peng
PROVIDER: E-GEOD-76638 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA