MOF acetyl transferase regulates transcription and respiration in mitochondria
Ontology highlight
ABSTRACT: Histone acetylation is sensitive to metabolic cues, however interplay between histone acetyl transferases and cellular metabolism remains poorly understood. Here we report the localization of a classical nuclear HAT- MOF and members of Non-Specific Lethal complex in mitochondria. MOF regulates expression of oxidative phosphorylation (OXPHOS) genes, residing in both nuclear and mitochondrial genomes, selectively in aerobically respiring cells. Furthermore, MOF/KANSL1 depletion causes impaired mitochondrial translation and reduced respiration. MOF loss is catastrophic for tissues with high-energy consumption. In mouse hearts, Mof knockout causes hypertrophic cardiomyopathy, compromised ventricular contractility/ stroke volume and ultimately leads to cardiac failure within three weeks of birth. RNA-seq analysis of the cardiomyocytes revealed deregulation of mitochondrial nutrient metabolism and OXPHOS pathways. Consistently, electron microscopy on affected tissues revealed mitochondrial deterioration with high tissue heterogeneity, commonly observed in mitochondrial diseases. Thus, we reveal a novel function of MOF in mitochondrial homeostasis and propose MOF as a sensor connecting epigenetic regulation to metabolism. We generated mRNA-seq profile of Mof depleted HeLa cells adapted in glucose or galactose media. We also present nuclear RNA seq profile from Mof deleted cardiomyocytes.
ORGANISM(S): Mus musculus
SUBMITTER: Aindrila Chatterjee
PROVIDER: E-GEOD-77784 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA