Project description:Different diets and lipid-lowering treatment influence gene expression profiles in mouse liver; We used microarrays to detail the hepatic gene expression profiles and identified distinct classes of changed genes under the different treatments. Experiment Overall Design: Mouse livers were selected after different treatments for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Excessive glucose production in the liver is a key factor in the hyperglycemia observed in diabetes mellitus type 2. It is generally agreed to result from an increase in hepatic gluconeogenesis. Considerable attention has been devoted to the transcriptional regulation of key gluconeogenic enzymes, but much less is known about the regulation of amino-acid catabolism, which generates gluconeogenic substrates. Here, we highlight a novel role of LKB1 in this regulation. We show that mice with a hepatocyte-specific deletion of Lkb1 have higher levels of hepatic amino acid catabolism, driving gluconeogenesis. This effect was observed during both fasting and the postprandial period, identifying Lkb1 as a critical suppressor of postprandial hepatic gluconeogenesis. Hepatic Lkb1 deletion was associated with major changes in whole-body metabolism, leading to a lower lean body mass and, in the longer term, sarcopenia and cachexia, as a consequence of the diversion of amino acids to liver metabolism at the expense of muscle. Using genetic and pharmacological approaches, we identified the aminotransferases and specifically, Agxt as effectors of the suppressor function of Lkb1 in amino acid-driven gluconeogenesis. The present dataset is from the phosphoproteomic analysis of the refed mice in a study where a global quantitative analysis ( PXD013478 ) is also described in the same publication.
Project description:Excessive glucose production in the liver is a key factor in the hyperglycemia observed in diabetes mellitus type 2. It is generally agreed to result from an increase in hepatic gluconeogenesis. Considerable attention has been devoted to the transcriptional regulation of key gluconeogenic enzymes, but much less is known about the regulation of amino-acid catabolism, which generates gluconeogenic substrates. Here, we highlight a novel role of LKB1 in this regulation. We show that mice with a hepatocyte-specific deletion of Lkb1 have higher levels of hepatic amino acid catabolism, driving gluconeogenesis. This effect was observed during both fasting and the postprandial period, identifying Lkb1 as a critical suppressor of postprandial hepatic gluconeogenesis. Hepatic Lkb1 deletion was associated with major changes in whole-body metabolism, leading to a lower lean body mass and, in the longer term, sarcopenia and cachexia, as a consequence of the diversion of amino acids to liver metabolism at the expense of muscle. Using genetic and pharmacological approaches, we identified the aminotransferases and specifically, Agxt as effectors of the suppressor function of Lkb1 in amino acid-driven gluconeogenesis. The present dataset is from the phosphoproteomic analysis of fasting mice in a study where a global quantitative analysis ( PXD013478 ) is also described in the same publication.
Project description:Chronic stress leads post-traumatic stress disorder (PTSD) and to metabolic complications, including fatty liver. It is feasible, that stress immediately initiates molecular mechanisms to alter energy metabolism and glucose homeostasis which interfere with hepatic lipid accumulation after stress recovery. We aim to elucidate these molecular mechanisms of long term stress effects on metabolism and focus on physiological adaptation and the role of FGF21, which is protective in hepatic lipid accumulation. Methods FGF21 knockout and control mice were exposed to chronic variable stress (Cvs) and recovered for 3 months to simulate PTSD. We determined in vivo and ex vivo energy metabolism, mitochondrial function by extracellular flux analysis, alterations in DNA modifying enzymes and gene regulation immediately after stress and after the recovery period to determine long term alterations. Results Chronic stress leads to reduced insulin sensitivity and hepatic lipid accumulation with increased fatty acid uptake (FAU), stress-induced lipolysis, and reduction in NAD+/NAD ratio and Sirt activity. Immediately after stress, PPARa and SREBP-1 target genes are differentially regulated and are involved in the development of stress-induced fatty liver. After recovery, insulin sensitivity increases but insulin-induced de novo lipogenesis (DNL) is reduced and FAU is increased. HDAC and MT activity are suppressed, whereas HAT activity increases, linking metabolic adjustments to transcriptional regulators. Thus, key metabolic genes are differentially regulated and secreted proteins indicate the activation of liver disease by Cvs only in FGF21WT. GR binding to the Cd36 promoter is altered. After stress recovery, serum FGF21 is increased and protects against lipid accumulation. FGF21 interacts by attenuating DNL, increasing FAU and HAT activity, and balancing mitochondrial activity. Higher long-term stress-induced activation and binding of GR to the FGF21 promoter may contribute to the prolonged FGF21 release. Conclusions We show that previous stress exposure determines predisposition to fatty liver disease is regulated by FGF21. Immediately after Cvs, altered gene regulation and activity of DNA-modifying enzymes determine the metabolic late effects seen in PTSD. FGF21 functions after chronic stress exposure i) to protect against hepatic lipid accumulation, ii) to maintain mitochondrial capacity, and iii) to mediate in the modulation of DNA-modifying enzymes. These findings highlight the protective role of FGF21 even in stress-induced hepatic lipid accumulation.
Project description:Xbp1 is an important regulator of unfolded protein response and lipid metabolism. Its dyregulation has been associcated in human NASH. Feeding a high fat diet with fructose/sucrose to mice causes progressive, fibrosing steatohepatitis. This study is to use RNA-Seq to identify differentially expressed genes in hepatic Xbp1 deficient mice livers fed with a high fat diet compared to controls. Hepatic Xbp1 deficient mice or flox controls were fed either regular chow or a high fat diet (n=4). Samples from each cohort were pooled into two replicates.
Project description:The metabolic syndrome represents a cluster of well-documented risk factors for the development of type 2 diabetes and cardiovascular disease. Next to visceral obesity, dyslipidemia and insulin resistance, excessive triglyceride accumulation in the liver has been implicated to play a role in the development of the metabolic syndrome. To investigate the underlying molecular changes leading to hepatic steatosis we performed microarray analysis on livers of mice either fasted over night or fed a high fat diet for 2 Weeks. We analysed 7 500 genes and subsequently performed a pathway analysis to identify changes in hepatic genes in both models. Fasting induced a high number of differentially expressed hepatic genes, resulting in an change towards an energy saving phenotype. In contrast only a small number of genes were differentially expressed after high fat diet. Fasting promoted gluconeogenesis and b-oxidation, strongly suppressed cholesterol synthesis and activated pathways to preserve hepatic function. High fat diet induced steatosis was accompanied by the activation of the stearoyl-CoA desaturase and the lipogenic transcription factor Srebp-1c, both implicated in the development of hepatic insulin resistance. These changes reflect the activation of different gene expression programs in response to plasma lipid overload. Keywords: Diet intervention Two conditions, fasting and high fat diet. 5 biological replicates for comparison of high fat diet versus fasting and controls versus high fat diet, 4 biological replicates for the comparison of controls versus fasting. All biological replicates are performed as technical replicates in the form of a dye-swap. Total number of arrays hybridises is therefore 28.
Project description:Peroxisome proliferator-activated receptor alpha (PPARα) is a key regulator of hepatic fat oxidation that serves as an energy source during starvation. Vanin-1 has been described as a putative PPARα target gene in liver, but its function in hepatic lipid metabolism is unknown. We investigated the regulation of vanin-1, and total vanin activity, by PPARα in mice and humans. Furthermore, the function of vanin-1 in the development of hepatic steatosis in response to starvation was examined in Vnn1 deficient mice, and in rats treated with an inhibitor of vanin activity. Liver microarray analyses reveals that Vnn1 is the most prominently regulated gene after modulation of PPARα activity. In addition, activation of mouse PPARα regulates hepatic- and plasma vanin activity. In humans, consistent with regulation by PPARα, plasma vanin activity increases in all subjects after prolonged fasting, as well as after treatment with the PPARα agonist fenofibrate. In mice, absence of vanin-1 exacerbates the fasting-induced increase in hepatic triglyceride levels. Similarly, inhibition of vanin activity in rats induces accumulation of hepatic triglycerides upon fasting. Microarray analysis reveal that the absence of vanin-1 associates with gene sets involved in liver steatosis, and reduces pathways involved in oxidative stress and inflammation. We show that hepatic vanin-1 is under extremely sensitive regulation by PPARα and that plasma vanin activity could serve as a readout of changes in PPARα activity in human subjects. In addition, our data propose a role for vanin-1 in regulation of hepatic TG levels during fasting. Livers of wild type and vanin-1 knockout mice that were fed or fasted for 24h were subjected to gene expression analysis
Project description:Abnormalities in hepatic lipid metabolism are believed to play a critical role in the etiology of nonalcoholic steatohepatitis (NASH). Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol (TAG) synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis and knocking down Mogat1 improves insulin sensitivity, but whether increased MGAT activity plays a role in the etiology of NASH is unclear. To examine the effects of knocking down Mogat1 in the liver on the development of NASH, C57BL/6 mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were then injected with antisense oligonucleotides (ASO) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver, attenuated weight gain, improved glucose tolerance, and decreased hepatic TAG content compared to control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic DAG, cholesterol, or free fatty acid content, improve histologic measures of liver injury, or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves glucose tolerance and hepatic TAG accumulation without attenuating liver inflammation and injury. Total RNA obtained from liver of 4 control vs. 4 Mogat1 ASO treated higf-fat diet (HFD) fed mice.
Project description:The goal of this experiment was to distinguish those genes regulated following acute HNF4alpha depletion compared to a developmental knockout model where gene compensation may comfound results. Expression profile of livers from 8 week old male Hnf4alpha Flox mice that express either albumin cre or the tamoxifen inducible ErT2-albumin cre for liver-specific deletion. Mice were fed a control diet or tamoxifen diet in the case of the ErT2-albumin cre to induce recombination. Six-condition experiment, H4N vs H4T vs H4EN vs H4ET vs H4CN vs H4CP. Biological replicates: 4 samples each group.