Enhanced CLIP uncovers IMP protein-RNA targets in human pluripotent stem cells important for cell adhesion and survival [RNA-Seq]
Ontology highlight
ABSTRACT: Human pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using a recently developed enhanced UV crosslinking and immunoprecipitation (eCLIP) approach, we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region- and binding site-level IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3'UTR-enriched targets. RNA Bind-N-Seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes, including a reduction in cell adhesion and an increase in cell death. For cell adhesion, in hPSCs we find IMP1 maintains levels of integrin mRNA, specifically regulating RNA stability of ITGB5. Additionally, we show IMP1 can be linked to hPSC survival via direct target BCL2. Thus, transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles. eCLIP-seq was performed in biological replicate for IGF2BP1/IMP1 and IGF2BP2/IMP2, as well as one replicate each for IGF2BP3/IMP3, RBFOX2, and an IgG control. Each sample has a size-matched input control for analysis
ORGANISM(S): Homo sapiens
SUBMITTER: Gene Yeo
PROVIDER: E-GEOD-78508 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA