Salmon Macrophage early response to Aeromonas salmonicida
Ontology highlight
ABSTRACT: Aeromonas salmonicida is a fish pathogen that causes furunculosis. Virulent strains of this bacterium are able to infect salmonid macrophages and survive within them, although mechanisms favouring intracellular survival are not completely understood. It is known that A. salmonicida cultured in vivo in the peritoneal cavity of the host undergoes changes in gene expression and surface architecture compared with cultures grown in vitro in broth. Therefore, in this study, the macrophage responses to A. salmonicida grown in vivo and in vitro were compared. Enriched macrophages isolated from head kidney of Atlantic salmon (Salmo salar) were infected in vitro in 96-well microtitre dishes and changes in gene expression during the infection process were monitored using a custom Atlantic salmon cDNA microarray. A. salmonicida cultures grown in tryptic soy broth and in peritoneal implants were used to infect the macrophages. The macrophages were harvested at 0.5, 1.0 and 2.0 h after addition of the bacteria to the medium. Significant changes in gene expression were evident by microarray analysis at 2.0 h post-infection in macrophages infected with broth-grown and implant-grown bacteria; however, qPCR analysis revealed earlier up-regulation of JunB and TNF-alpha in macrophages exposed to the implant-grown bacteria. Up-regulation of those genes and others is consistent with the effects of extracellular products of aeromonad bacteria on macrophages and also suggests initiation of the innate immune response. Keywords: time course Enriched macrophages from 24 responder fish that showed positive respiratory burst in response to phorbol myristate acetate were plated in individual wells of 96-well flat-bottom polystyrene tissue culture plates. A. salmonicida were added to the macrophages, and incubated for 0.5, 1.0 or 2.0 h. Control wells received 10 ul of HBSS. Three replicate infections were performed for each type of bacteria. Hybridizations were carried out in duplicate, reversing the fluors for each sample on the second chip.
ORGANISM(S): Salmo salar
SUBMITTER: Katherine Ewart
PROVIDER: E-GEOD-8526 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA