Transcription profiling of wild type yeast and a mutant deficient for intron degradation using a high density tiling array for genome-wide mapping of introns
Ontology highlight
ABSTRACT: High density yeast tiling array reveals new introns and extensive meiotic splicing regulation. Knowing gene structure is vital to understanding gene function, and accurate genome annotation is essential for understanding cellular function. To this end, we have developed an assay for genome-wide mapping of introns in Saccharomyces cerevisiae. Using high-density tiling arrays we compared wild type yeast to a mutant deficient for intron degradation. Our method identified 76% of the known introns, verified the existence of an additional 18 predicted introns, and revealed six new introns. Furthermore, we discovered that all 13 meiosis-specific intronic yeast genes undergo regulated splicing, which provides post-transcriptional regulation of the genes involved in yeast cell differentiation. Moreover, we found that >10% of intronic genes in yeast are incompletely spliced during exponential growth in rich media, suggesting that meiosis is not the only cellular function regulated by splicing. The method provides a clear snapshot of the spliced transcriptome in yeast. Our tiling array assay can be used to explore a variety of cellular environments and should be readily adaptable to the study of other organisms including humans.
ORGANISM(S): Saccharomyces cerevisiae
SUBMITTER: Molly Miranda
PROVIDER: E-MEXP-919 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA