MiR-16 Interactome in Uveal Melanoma
Ontology highlight
ABSTRACT: Chromosome 3p monosomy is associated with a poor clinical outcome of patients with uveal melanoma. Since a copy of the tumor suppressor miR-16 gene is lost for these patients, we postulated that a 3p loss may reduce the miR-16 amount and activity, promoting RNA derepression and tumor burden (loss of brake effect) as observed in chronic lymphocytic leukemia. Unexpectedly, we found that miR-16 expression level is not decreased despite the 3p monosomy. In contrast, our results suggested that miR-16 activity is impaired in uveal melanoma. Here, we investigated the molecular mechanism explaining the sequestration of miR-16 by RNAs. By defining the miR-16 interactome, two genes sets have been highlighted, suggesting two divergent miR-16 functions. In addition to the canonical miR-16 targets such as CCND3 and CDC25A, we identified another set of miR-16-interacting RNAs called thereafter miR-16 sponges. miR-16 binds to these RNAs sponge without inducing their decay. Mechanistically, the miR-16/RNA non-canonical base-pairing promoted stability of mRNAs involved in cancer cell proliferation. The biological relevance has been challenged in uveal melanoma. We showed that patients with poor overall survival expressed higher levels of miR-16 sponges and canonical miR-16 targets. These results strongly suggested that miR-16 is no longer able to repress its targets and, in contrast, promotes RNA stability and protein expression of oncogenes. miR-16 activity assessment using our Sponge-signature discriminates the patient’s overall survival as efficiently as the current method based on copy number variations and driver mutations detection. To conclude, miRNA loss of function due to miRNA sequestration seems to promote cancer burden by two combined events – 'loss of brake and an acceleration'. Our results highlight the oncogenic role of the non-canonical base-pairing between miRNAs/mRNAs in uveal melanoma.
INSTRUMENT(S): Illumina NovaSeq 6000
ORGANISM(S): Homo sapiens
SUBMITTER: David Gilot
PROVIDER: E-MTAB-10940 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA