Project description:Genome-wide CRISPR-Cas9 knockout screen using TKOv1 sgRNA library performed in isogenic RBM10-proficient and RBM10-deficient HCC827 cells.
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:Genome-wide CRISPR-Cas9 knockout screen using TKOv1 sgRNA library was performed in isogenic RBM10-proficient and RBM10-deficient HCC827 cells.
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:Analysis of Cas9/sgRNA mutagenic activity at a variety of loci in zebrafish. Each loci has a control, where no Cas9/sgRNA were injected. This is amplicon sequencing with Illumina, after PCR amplification. Data was processed with ampliCan R package version 1.1.1.
Project description:The haploid and the heterozygous essential S.cerevisiae deletion pools were grown in the presence of compounds that we found to be synergistic with fluconazole. We also treated the deletion pools with combinations of those drugs and fluconazole to interrogate the mechanism of action of the drug interactions. These experimental samples were hybridized against DMSO or water control samples. The resulting hybridization pattern informs about sensitive and resistant yeast deletion mutants.
Project description:We used the nanopore Cas9 targeted sequencing (nCATS) strategy to specifically sequence 125 L1HS-containing loci in parallel and measure their DNA methylation levels using nanopore long-read sequencing. Each targeted locus is sequenced at high coverage (~45X) with unambiguously mapped reads spanning the entire L1 element, as well as its flanking sequences over several kilobases. The genome-wide profile of L1 methylation was also assessed by bs-ATLAS-seq in the same cell lines (E-MTAB-10895).
Project description:In Birt-Hogg-Dubé (BHD) syndrome, germline mutations in the Folliculin (FLCN) gene lead to an increased risk of renal cancer. To address if FLCN is involved regulating cellular signaling pathways via protein and receptor phosphorylation we determined comprehensive complete phosphoproteomic profiles of FLCNPOS and FLCNNEG human renal tubular epithelial cells (RPTEC/TERT1). In total, 15744 phosphorylated peptides were identified, residing on 4329 phosphorylated proteins. Kinase activity inference analysis revealed that FLCN loss elevates phosphorylation of numerous kinases, including tyrosine kinases EPHA2 and MET, as well as activation of downstream MAPK1/3/6 and 8. Three non-canonical phosphorylation sites on EGFR (Tyr1125, Tyr1138 and Tyr1172) were higher phosphorylated upon FLCN loss together with enhanced phosphorylated EGFR substrates ABI, EPS8, ERRFL1, STAT1, PTK2 and CTNND1. In concordance, phosphosite specific signature analyses revealed an enrichment for EGFR signaling in FLCNNEG cells. Interestingly, we detected FLCN dependent phosphorylation of PIK3CD but no canonical downstream Akt/mTOR activation. In agreement with the induction of the E-box transcriptional gene expression signature upon FLCN loss, here we identified that phosphorylation of TFEB on Ser109, Ser114 and Ser122 is dependent on FLCN and absence of this phosphorylation results in constitutive nuclear localization of this transcription factor in FLCNNEG cells. Together, our study reveals enhanced phosphorylation of specific kinases and substrates in FLCNNEG renal epithelial cells, providing important insights in BHD-associated renal tumorigenesis and offering novel handles for the design of targeted therapies.