Project description:We developed cell2location, a principled and versatile Bayesian model that is designed to resolve fine-grained cell types in spatial transcriptomic data and create comprehensive cellular maps of diverse tissues. To validate cell2location in real tissue, we applied the model to data from the mouse brain, which features diverse neural cell types organised in a well characterised spatial architecture across brain areas, thus presenting a canonical use case to test spatial genomics. We generated matched single nucleus (sn, this submission) and Visium spatial RNA-seq (10X Genomics) profiles of adjacent mouse brain sections that contain multiple regions from the telencephalon and diencephalon. To assess the biological and intra-organ technical variation in spatial mapping, we assayed two mouse brains and serial tissue sections from each brain (total of 3 and 2 matched sections from two animals, respectively, and an extra section for snRNA-seq), creating a rich multi-modal and replicated transcriptomic dataset. Tissue processing. Brains of wild-type adult C57BL/6 mice (postnatal day 56, 1 female and 1 male) were dissected, snap frozen, embedded in optimal cutting temperature compound (Tissue-Tek) and stored at -80oC. Brain hemispheres were cryosectioned at -20oC using a cryostat (Leica, CM3050S). To assess tissue quality, RNA was extracted from test tissue sections using the RNeasy Pico Kit (Qiagen) and yielded high RIN values (9.6 and 9.7) on an Agilent Bioanalyser, indicating high RNA quality. For matched single nuclei and Visium RNA-seq experiments, brain hemispheres were cryosectioned to adjacent thick (200 µm) and thin (10 µm) coronal sections, respectively, and processed the same day. In total, four consecutive sets of thick and thin tissue sections were collected from each brain. Five sets of tissue sections yielded both good quality single nuclei and Visium data (three adjacent sections from mouse 1 and two sections from mouse 2) while one additional section from mouse 2 yielded good single nuclei; these were considered for analysis in this study. Visium spatial transcriptomics. Thin (10 µm) mouse brain sections were cryosectioned and mounted directly onto separate capture areas on 10X Visium Spatial Gene Expression slides (beta product version). Processing was done per manufacturer’s protocols. Briefly, sections were methanol-fixed, hematoxylin and eosin (H&E)-stained, and imaged on a NanoZoomer 2.0 slide scanner (Hamamatsu). Sections were then permeabilized and further processed to obtain cDNA libraries that were quality controlled using the Agilent Bioanalyser. The cDNA libraries were sequenced on the Illumina HiSeq 4000 system, aiming at 300 million raw reads per section with read lengths 28cy R1, 8cy i7 index, 0cy i5 index, 91cy read 2. 10X Visium spatial sequencing data was aligned to mouse pre-mRNA genome reference version mm10 using 10X SpaceRanger and mRNA count matrices were generated by adding intronic and exonic reads for each gene in each location. The paired histology H&E images were processed using 10X SpaceRanger to select locations covered by tissue by aligning pre-recorded spot locations with fiducial border spots in the histology image. This allows evaluating the correspondence between cell maps produced using our method and the known brain anatomy. This also allows identifying the number of nuclei in each spot using nuclear segmentation as described in Suppl. Methods and reported in Fig S8A-D. The histology image was used to manually annotate cortical layers in the primary somatosensory cortex (SSp) region using the lasso tool in the 10X Loupe browser.
Project description:These are the Visium spatial transcriptomic data (10x Genomics) from 9 patients with Head and Neck Squamous Cell Carcinoma (oral cavity) treated in Gustave Roussy. Patients are stratified by their tumoral density of multinucleated giant cells (MGC) : 6 patients have high MGC density (patients 1, 2, 3, 4, 5, 8) and 3 have low MGC density (patients 6, 7, 9). There is one data file for each patient, except for one patient that has 3 data files (patient 1). Accordingly, there are 9 patients but 11 samples. The source code of the is available on GitHub (https://github.com/AhmedAmineAnzali/MGC_Paper_Analysis). The results are published in the paper untitled : Trem2-expressing multinucleated giant macrophages are a biomarker of good prognosis in head and neck squamous cell carcinoma (Gessain et al., 2024, Cancer Discovery). Please contact the corresponding author for more information.
Project description:Spatial organization of different cell types within prenatal skin across various anatomical sites is not well understood. To address this, here we have generated spatial transcriptomics data from prenatal facial and abdominal skin obtained from a donor at 10 post conception weeks. This in combination with our prenatal skin scRNA-seq dataset has helped us map the location of various identified cell types.
Project description:Identification of cell types in the interphase between muscle and tendon by Visium Spatial Transcriptomics of four human semitendinous muscle-tendon biopsies. Cell types identified by single nuclei RNA seq on similar tissue were localized in situ with the use of Spatial Transcriptomics.
Project description:Specification of primordial germ cells (PGCs) marks the beginning of the totipotent state. However, without a tractable experimental model, the mechanism of human PGC (hPGC) specification remains unclear. Here, we demonstrate specification of hPGC-like cells (hPGCLCs) from germline competent pluripotent stem cells. The characteristics of hPGCLCs are consistent with the embryonic hPGCs and a germline seminoma that share a CD38 cell-surface marker, which collectively defines likely progression of the early human germline. Remarkably, SOX17 is the key regulator of hPGC-like fate, whereas BLIMP1 represses endodermal and other somatic genes during specification of hPGCLCs. Notable mechanistic differences between mouse and human PGC specification could be attributed to their divergent embryonic development and pluripotent states, which might affect other early cell-fate decisions. We have established a foundation for future studies on resetting of the epigenome in hPGCLCs and hPGCs for totipotency and the transmission of genetic and epigenetic information. RNA-Seq analysis to investigate transcriptomes of hPGC-like cells (hPGCLCs), fetal hPGCs, TCam-2 and hESCs
Project description:scRNA-seq of mouse embryonic stem cells (mESC) derived from four different genetic backgrounds grown in ground state conditions and differentiated towards an epiblast stem cell like (EpiSCL) population.
Project description:We used Visium technology (10X Genomics) to infer cell-to-cell communication in ovarian and uterine tissue based on spatial proximity. Organs from 3-month mice in diestrus and 18-month old mice were collected and frozen in OCT. 10 µm thick tissue slices were placed on Visium Spatial Gene Expression Slides (10X Genomics) and stained with Hematoxylin and Eosin (H&E). Libraries were prepared by manufacturer’s recommendations and sequenced on NovaSeq6000. For samples that were sequenced in two runs, both sequencing runs were merged when running spaceranger (10X Genomics). Original nd2 microscopy images and results of scRNA-seq (linked datasets) and spatial transcriptomics analysis are available at Biostudies (S-BIAD482 and S-BSST852).
Project description:We performed spatial transcriptomics sequencing (ST-seq) to resolve geographically defined transcriptome-wide gene expression within the tissue context of four human and six mouse kidneys. This application of ST-seq within healthy mammalian kidneys demonstrates the integration of transcriptional profiles with histology, and is a valuable data resource for the kidney community.
Project description:Inherent hemispheric asymmetry is significant for cognition, language and other functions. An understanding of normal brain and asymmetry development in the early period will further the knowledge of how different hemispheres prioritize specific functions, which is still unknown. We analysed the developmental changes in and asymmetry of the proteome in the bilateral frontal lobes of three foetal specimens in the late first trimester of pregnancy (9, 11, 13 gestational weeks). We found that during this period, the difference in expression between gestational weeks increased, and the difference in asymmetric expression decreased. The patterns of protein expression changes in the bilateral frontal lobes were different. Our results show that brain asymmetry can be observed in the early stage. Researchers can use these findings to further investigate the mechanisms of brain asymmetry.