Functions and adaptive responses to oxidative stress of the thioredoxin and glutathione pathways in Clostridium acetobutylicum
Ontology highlight
ABSTRACT: Oxidative stress is harmful for organism and occurs when the cells exposed to superoxid, hydrogen peroxide and alkylhydroperoxides. In microorganism, the glutathione- and thioredoxin-dependent reduction systems are universal and play an important role in response to defending oxidative stress. The _-glutamylcysteine synthetase (_-GCS) is an essential enzyme to biosynthesize the tripeptide glutathione (GSH) in organism. Similarly, thioredoxin reductase is an important enzyme in thioredoxin-dependent reduction system. In Clostridium acetobutylicum, the _-glutamylcysteine synthetase (encoded by CAC1539, gcs) and thioredoxin reductase (encoded by CAC1548, trxB) were inactivated using ClosTron technology. The gcs mutant grew insufficiently and consumed less glucose in the phosphate-limited continuous culture and exhibited more sensitive to oxidative stress. The trxB mutant just exhibited lower growth rate and less glucose uptake in the solventogenic phase, compared to wild type. The DNA microarrays were performed to investigate the transcripome difference between wild type and the mutants. In gcs mutant, the genes related to chemotaxis and flagella biosynthesis proteins were induced significantly and in the trxB mutant, the sporulation genes were induced largely. Based on the phenotypes and transcriptome comparison results, the relationship between GSH- and Trx-dependent induction systems was discussed in Clostridium acetobutylicum.
ORGANISM(S): Clostridium acetobutylicum ATCC 824
SUBMITTER: ziyong liu
PROVIDER: E-MTAB-2747 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA