Project description:Fructooligosaccharides (FOSs) metabolism in Lactobacillus plantarum is controlled by two gene clusters, and the global regulator catabolite control protein A (CcpA) may be involved in the regulation. To understand the mechanism, this study focused on the regulation relationships of CcpA toward target genes and the binding effects on the catabolite responsive element (cre). First, reverse transcription-PCR analysis of the transcriptional organization of the FOS-related gene clusters showed that they were organized in three independent polycistronic units. Diauxic growth, hierarchical utilization of carbohydrates and repression of FOS-related genes were observed in cultures containing FOS and glucose, suggesting carbon catabolite repression (CCR) control in FOS utilization. Knockout of ccpA gene eliminated these phenomena, indicating the principal role of this gene in CCR of FOS metabolism. Furthermore, six potential cre sites for CcpA binding were predicted in the regions of putative promoters of the two clusters. Direct binding was confirmed by electrophoretic mobility shift assays in vitro and chromatin immunoprecipitation in vivo. The results of the above studies suggest that CcpA is a vital regulator of FOS metabolism in L. plantarum and that CcpA-dependent CCR regulates FOS metabolism through the direct binding of CcpA toward the cre sites in the promoter regions of FOS-related clusters.
Project description:The catabolite control protein CcpA is a central regulator in low-G+C-content gram-positive bacteria. It confers carbon catabolite repression to numerous genes required for carbon utilization. It also operates as a transcriptional activator of genes involved in diverse phenomena, such as glycolysis and ammonium fixation. We have cloned the ccpA region of Lactobacillus pentosus. ccpA encodes a protein of 336 amino acids exhibiting similarity to CcpA proteins of other bacteria and to proteins of the LacI/GalR family of transcriptional regulators. Upstream of ccpA was found an open reading frame with similarity to the pepQ gene, encoding a prolidase. Primer extension experiments revealed two start sites of transcription for ccpA. In wild-type cells grown on glucose, mRNA synthesis occurred only from the promoter proximal to ccpA. In a ccpA mutant strain, both promoters were used, with increased transcription from the distant promoter, which overlaps a presumptive CcpA binding site called cre (for catabolite responsive element). This suggests that expression of ccpA is autoregulated. Determination of the expression levels of CcpA in cells grown on repressing and nonrepressing carbon sources revealed that the amounts of CcpA produced did not change significantly, leading to the conclusion that the arrangement of two promoters may ensure constant expression of ccpA under various environmental conditions. A comparison of the genetic structures of ccpA regions revealed that lactic acid bacteria possess the gene order pepQ-ccpA-variable while the genetic structure in bacilli and Staphylococcus xylosus is aroA-ccpA-variable-acuC.
Project description:Streptococcus oligofermentans is an oral commensal that inhibits the growth of the caries pathogen Streptococcus mutans by producing copious amounts of H(2)O(2) and that grows faster than S. mutans on galactose. In this study, we identified a novel eight-gene galactose (gal) operon in S. oligofermentans that was comprised of lacABCD, lacX, and three genes encoding a galactose-specific transporter. Disruption of lacA caused more growth reduction on galactose than mutation of galK, a gene in the Leloir pathway, indicating that the principal role of this operon is in galactose metabolism. Diauxic growth was observed in cultures containing glucose and galactose, and a luciferase reporter fusion to the putative gal promoter demonstrated 12-fold repression of the operon expression by glucose but was induced by galactose, suggesting a carbon catabolite repression (CCR) control in galactose utilization. Interestingly, none of the single-gene mutations in the well-known CCR regulators ccpA and manL affected diauxic growth, although the operon expression was upregulated in these mutants in glucose. A double mutation of ccpA and manL eliminated glucose repression of galactose utilization, suggesting that these genes have parallel functions in regulating gal operon expression and mediating CCR. Electrophoretic mobility shift assays demonstrated binding of CcpA to the putative catabolite response element motif in the promoter regions of the gal operon and manL, suggesting that CcpA regulates CCR through direct regulation of the transcription of the gal operon and manL. This provides the first example of oral streptococci using two parallel CcpA-dependent CCR pathways in controlling carbohydrate metabolism.
Project description:BACKGROUND: Clostridium acetobutylicum has been used to produce butanol in industry. Catabolite control protein A (CcpA), known to mediate carbon catabolite repression (CCR) in low GC gram-positive bacteria, has been identified and characterized in C. acetobutylicum by our previous work (Ren, C. et al. 2010, Metab Eng 12:446-54). To further dissect its regulatory function in C. acetobutylicum, CcpA was investigated using DNA microarray followed by phenotypic, genetic and biochemical validation. RESULTS: CcpA controls not only genes in carbon metabolism, but also those genes in solvent production and sporulation of the life cycle in C. acetobutylicum: i) CcpA directly repressed transcription of genes related to transport and metabolism of non-preferred carbon sources such as d-xylose and l-arabinose, and activated expression of genes responsible for d-glucose PTS system; ii) CcpA is involved in positive regulation of the key solventogenic operon sol (adhE1-ctfA-ctfB) and negative regulation of acidogenic gene bukII; and iii) transcriptional alterations were observed for several sporulation-related genes upon ccpA inactivation, which may account for the lower sporulation efficiency in the mutant, suggesting CcpA may be necessary for efficient sporulation of C. acetobutylicum, an important trait adversely affecting the solvent productivity. CONCLUSIONS: This study provided insights to the pleiotropic functions that CcpA displayed in butanol-producing C. acetobutylicum. The information could be valuable for further dissecting its pleiotropic regulatory mechanism in C. acetobutylicum, and for genetic modification in order to obtain more effective butanol-producing Clostridium strains.
Project description:A locus containing a gene with homology to ccpA of other bacteria has been cloned from Streptococcus mutans LT11, sequenced, and named regM. Upstream of the regM gene, on the opposite strand, is a gene encoding an X-Pro dipeptidase, pepQ. A 14-bp palindromic sequence with homology to the consensus catabolite-responsive element sequence lay in the promoter region between the two genes. To study the function of regM, the gene was inactivated by insertion of an antibiotic resistance marker. Diauxic growth of S. mutans on a number of sugars in the presence of glucose was not affected by disruption of regM. The loss of RegM increased glucose repression of alpha-galactosidase, mannitol-1-P dehydrogenase, and P-beta-galactosidase activities. These results suggest that while RegM can affect catabolite repression in S. mutans, it does not conform to the model proposed for CcpA in Bacillus subtilis.
Project description:The chromosomal ccpA gene from Lactobacillus casei ATCC 393 has been cloned and sequenced. It encodes the CcpA protein, a central catabolite regulator belonging to the LacI-GalR family of bacterial repressors, and shows 54% identity with CcpA proteins from Bacillus subtilis and Bacillus megaterium. The L. casei ccpA gene was able to complement a B. subtilis ccpA mutant. An L. casei ccpA mutant showed increased doubling times and a relief of the catabolite repression of some enzymatic activities, such as N-acetylglucosaminidase and phospho-beta-galactosidase. Detailed analysis of CcpA activity was performed by using the promoter region of the L. casei chromosomal lacTEGF operon which is subject to catabolite repression and contains a catabolite responsive element (cre) consensus sequence. Deletion of this cre site or the presence of the ccpA mutation abolished the catabolite repression of a lacp::gusA fusion. These data support the role of CcpA as a common regulatory element mediating catabolite repression in low-GC-content gram-positive bacteria.
Project description:The two-component regulatory system, involving the histidine sensor kinase DegS and response regulator DegU, plays an important role to control various cell processes in the transition phase of Bacillus subtilis. The degU32 allele in strain 1A95 is characterized by the accumulation of phosphorylated form of DegU (DegU-P).Growing 1A95 cells elevated the pH of soytone-based medium more than the parental strain 168 after the onset of the transition phase. The rocG gene encodes a catabolic glutamate dehydrogenase that catalyzes one of the main ammonia-releasing reactions. Inactivation of rocG abolished 1A95-mediated increases in the pH of growth media. Thus, transcription of the rocG locus was examined, and a novel 3.7-kb transcript covering sivA, rocG, and rocA was found in 1A95 but not 168 cells. Increased intracellular fructose 1,6-bisphosphate (FBP) levels are known to activate the HPr kinase HPrK, and to induce formation of the P-Ser-HPr/CcpA complex, which binds to catabolite responsive elements (cre) and exerts CcpA-dependent catabolite repression. A putative cre found within the intergenic region between sivA and rocG, and inactivation of ccpA led to creation of the 3.7-kb transcript in 168 cells. Analyses of intermediates in central carbon metabolism revealed that intracellular FBP levels were lowered earlier in 1A95 than in 168 cells. A genome wide transcriptome analysis comparing 1A95 and 168 cells suggested similar events occurring in other catabolite repressive loci involving induction of lctE encoding lactate dehydrogenase.Under physiological conditions the 3.7-kb rocG transcript may be tightly controlled by a roadblock mechanism involving P-Ser-HPr/CcpA in 168 cells, while in 1A95 cells abolished repression of the 3.7-kb transcript. Accumulation of DegU-P in 1A95 affects central carbon metabolism involving lctE enhanced by unknown mechanisms, downregulates FBP levels earlier, and inactivates HPrK to allow the 3.7-kb transcription, and thus similar events may occur in other catabolite repressive loci.
Project description:We report the characterization of the ccpA gene of Lactobacillus plantarum, coding for catabolite control protein A. The gene is linked to the pepQ gene, encoding a proline peptidase, in the order ccpA-pepQ, with the two genes transcribed in tandem from the same strand as distinct transcriptional units. Two ccpA transcription start sites corresponding to two functional promoters were found, expression from the upstream promoter being autogenously regulated through a catabolite-responsive element (cre) sequence overlapping the upstream +1 site. During growth on ribose, the upstream promoter showed maximal expression, while growth on glucose led to transcription from the downstream promoter. In a ccpA mutant strain, the gene was transcribed mainly from the upstream promoter in both repressing and non repressing conditions. Expression of two enzyme activities, beta-glucosidase and beta-galactosidase, was relieved from carbon catabolite repression in the ccpA mutant strain. In vivo footprinting analysis of the catabolite-controlled bglH gene regulatory region in the ccpA mutant strain showed loss of protection of the cre under repressing conditions.
Project description:We identified five single amino acid exchanges in CcpA that lead to permanent repression of the xylose utilization genes in the absence of glucose. Other proteins from the CcpA regulon also show glucose-independent regulation in the mutants. The mutant CcpA proteins bind to the DNA target catabolite responsive elements without the corepressor HPr-Ser-P.