Influence of development and dietary phospholipid content and composition on intestinal transcriptome of Atlantic salmon (Salmo salar)
Ontology highlight
ABSTRACT: The inclusion of intact phospholipids in the diet is essential during larval development and can improve culture performance of many fish species. The effects of supplementation of dietary phospholipid from marine (krill) or plant (soy lecithin) sources were investigated in Atlantic salmon, Salmo salar. First feeding fry were fed diets containing either krill oil supplying phospholipid at 2.6% of diet (named K2.6) or soybean lecithin supplying phospholipid at 2.6 % (S2.6), 3.6 % (S3.6) of diet. A control diet (B) without supplemented phospholipid was also supplied. Fish were sampled at ~ 2.5 g (~1990 ˚ day post fertilization, dpf) and ~10 g (2850 ˚dpf). By comparison of the intestinal transcriptome in specifically chosen contrasts, it was determined that by 2850˚dpf fish possessed a profile that resembled that of mature and differentiated intestinal cell types with a number of changes specific to glycerophospholipid metabolism. It was shown that intact phospholipids and particularly phosphatidylcholine are essential during larval development and that this requirement is associated with the inability of enterocytes in young fry to endogenously synthesize sufficient phospholipid for the efficient export of dietary lipid. In the immature phase (~1990 ˚dpf), the dietary phospholipid content as well as its class composition impacted on several biochemical and morphological parameters including growth, but these differences were not associated with differences in intestinal transcriptomes. The results of this study have made an important contribution to our understanding of the mechanisms associated with lipid transport and phospholipid biosynthesis in early life stages of fish.
ORGANISM(S): Salmo salar
SUBMITTER: Christian De Santis
PROVIDER: E-MTAB-3673 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA