Project description:Variations on the statement "the variant surface glycoprotein (VSG) coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier" appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i) Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii) Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.
Project description:Previously, we reported the development of novel small molecules that are potent inhibitors of the glycolytic enzyme phosphofructokinase (PFK) of Trypanosoma brucei and related protists responsible for serious diseases in humans and domestic animals. Cultured bloodstream-form trypanosomes, which are fully reliant on glycolysis for their ATP production, are rapidly killed at submicromolar concentrations of these compounds, which have no effect on the activity of human PFKs and human cells. Single-day oral dosing cures stage 1 human trypanosomiasis in an animal model. Here we analyze changes in the metabolome of cultured trypanosomes during the first hour after addition of a selected PFK inhibitor, CTCB405. The ATP level of T. brucei drops quickly followed by a partial increase. Already within the first five minutes after dosing, an increase is observed in the amount of fructose 6-phosphate, the metabolite just upstream of the PFK reaction, while intracellular levels of the downstream glycolytic metabolites phosphoenolpyruvate and pyruvate show an increase and decrease, respectively. Intriguingly, a decrease in the level of O-acetylcarnitine and an increase in the amount of L-carnitine were observed. Likely explanations for these metabolomic changes are provided based on existing knowledge of the trypanosome's compartmentalized metabolic network and kinetic properties of its enzymes. Other major changes in the metabolome concerned glycerophospholipids, however, there was no consistent pattern of increase or decrease upon treatment. CTCB405 treatment caused less prominent changes in the metabolome of bloodstream-form Trypanosoma congolense, a ruminant parasite. This agrees with the fact that it has a more elaborate glucose catabolic network with a considerably lower glucose consumption rate than bloodstream-form T. brucei.
Project description:The biogenesis of the ER Exit Site/Golgi Junction (EGJ) in bloodstream-form African trypanosomes is investigated using tagged markers for ER Exit Sites, the Golgi and the bilobe structure. The typical pattern is two EGJ in G1 phase (1 kinetoplast/1 nucleus, 1K1N) through S-phase (2K1N), duplication to four EGJ in post-mitotic cells (2K2N) and segregation of two EGJ to each daughter. Lesser cell percentages have elevated EGJ copy numbers in all stages, and blocking cell cycle progression results in even higher copy numbers. EGJs are closely aligned with the flagellar attachment zone (FAZ) indicating nucleation on the FAZ-associated ER (FAZ:ER). Only the most posterior EGJ in each cell is in proximity to the bilobe, which is located at the base of the FAZ filament near the mouth of the flagellar pocket. These results indicate that EGJ replication in bloodstream trypanosomes is not tightly coupled to the cell cycle. Furthermore, segregation of EGJ is not obligately mediated by the bilobe, rather assembly of the EGJ on the FAZ:ER, which is coupled to the flagellar cytoskeleton, apparently ensures segregation with fidelity during cytokinesis. These findings differ markedly from procyclic-form trypanosomes, and models highlighting these stage-specific differences in EGJ biogenesis are proposed.
Project description:The closely related parasites Trypanosoma brucei, T. congolense, and T. vivax cause neglected tropical diseases collectively known as African Trypanosomiasis. A characteristic feature of bloodstream form T. brucei is the flagellum that is laterally attached to the side of the cell body. During the cell cycle, the new flagellum is formed alongside the old flagellum, with the new flagellum tip embedded within a mobile transmembrane junction called the groove. The molecular composition of the groove is currently unknown, which limits the analysis of this junction and assessment of its conservation in related trypanosomatids. Here, we identified 13 proteins that localize to the flagellar groove through a small-scale tagging screen. Functional analysis of a subset of these proteins by RNAi and gene deletion revealed three proteins, FCP4/TbKin15, FCP7, and FAZ45, that are involved in new flagellum tip attachment to the groove. Despite possessing orthologues of all 13 groove proteins, T. congolense and T. vivax did not assemble a canonical groove around the new flagellum tip according to 3D electron microscopy. This diversity in new flagellum tip attachment points to the rapid evolution of membrane-cytoskeleton structures that can occur without large changes in gene complement and likely reflects the niche specialization of each species.
Project description:The African trypanosome Trypanosoma brucei is a unicellular eukaryote, which relies on a protective Variant Surface Glycoprotein (VSG) coat for survival in the mammalian host. A single trypanosome has >2000 VSG genes and pseudogenes of which only one is expressed from one of ~15 telomeric bloodstream form expression sites (BESs). Infectious metacyclic trypanosomes present within the tsetse fly vector also express VSG from a separate set of telomeric metacyclic ESs (MESs). All MESs are silenced in bloodstream form T. brucei. As very little is known about how this is mediated, we performed a whole genome RNAi library screen to identify MES repressors. This allowed us to identify a novel SAP domain containing DNA binding protein which we called TbSAP. TbSAP is enriched at the nuclear periphery and binds both MESs and BESs. Knockdown of TbSAP in bloodstream form trypanosomes did not result in cells becoming more ‘metacyclic’-like. Instead, there was extensive global upregulation of transcripts including MES VSGs, VSGs within the silent VSG arrays as well as genes immediately downstream of BES promoters. TbSAP therefore appears to be a novel architectural chromatin protein playing an important role in silencing the extensive VSG repertoire of bloodstream form T. brucei.
Project description:Trypanosoma brucei, the agents of African trypanosomiasis, undergo density-dependent differentiation in the mammalian bloodstream to prepare for transmission by tsetse flies. This involves the generation of cell-cycle arrested, quiescent, stumpy forms from proliferative slender forms. The signalling pathway responsible for the quorum sensing response has been catalogued using a genome-wide selective screen, providing a compendium of signalling protein kinases phosphatases, RNA binding proteins and hypothetical proteins. However, the ordering of these components is unknown. To piece together these components to provide a description of how stumpy formation arises we have used an extragenic suppression approach. This exploited a combinatorial gene knockout and overexpression strategy to assess whether the loss of developmental competence in null mutants of pathway components could be compensated by ectopic expression of other components. We have created null mutants for three genes in the stumpy induction factor signalling pathway (RBP7, YAK, MEKK1) and evaluated complementation by expression of RBP7, NEK17, PP1-6, or inducible gene silencing of the proposed differentiation inhibitor TbTOR4. This indicated that the signalling pathway is non-linear. Phosphoproteomic analysis focused on one pathway component, a putative MEKK, identified molecules with altered expression and phosphorylation profiles in MEKK1 null mutants, including another component in the pathway, NEK17. Our data provide a first molecular dissection of multiple components in a signal transduction cascade in trypanosomes.
Project description:The Trypanosoma brucei flagellum is a multifunctional organelle with critical roles in motility, cellular morphogenesis, and cell division. Although motility is thought to be important throughout the trypanosome lifecycle, most studies of flagellum structure and function have been restricted to the procyclic lifecycle stage, and our knowledge of the bloodstream form flagellum is limited. We have previously shown that trypanin functions as part of a flagellar dynein regulatory system that transmits regulatory signals from the central pair apparatus and radial spokes to axonemal dyneins. Here we investigate the requirement for this dynein regulatory system in bloodstream form trypanosomes. We demonstrate that trypanin is localized to the flagellum of bloodstream form trypanosomes, in a pattern identical to that seen in procyclic cells. Surprisingly, trypanin RNA interference is lethal in the bloodstream form. These knockdown mutants fail to initiate cytokinesis, but undergo multiple rounds of organelle replication, accumulating multiple flagella, nuclei, kinetoplasts, mitochondria, and flagellum attachment zone structures. These findings suggest that normal flagellar beat is essential in bloodstream form trypanosomes and underscore the emerging concept that there is a dichotomy between trypanosome lifecycle stages with respect to factors that contribute to cell division and cell morphogenesis. This is the first time that a defined dynein regulatory complex has been shown to be essential in any organism and implicates the dynein regulatory complex and other enzymatic regulators of flagellar motility as candidate drug targets for the treatment of African sleeping sickness.
Project description:Trypanosoma brucei is the causative agent of both a veterinary wasting disease and human African trypanosomiasis, or sleeping sickness. The cell membrane of the developmental stage found within the mammalian host, the bloodstream form (BSF), is highly dynamic, exhibiting rapid rates of endocytosis and lateral flow of glycosylphosphatidylinositol-anchored proteins. Here, we show that the cell membrane of these organisms is a target for killing by small hydrophobic peptides that increase the rigidity of lipid bilayers. Specifically, we have derived trypanocidal peptides that are based upon the hydrophobic N-terminal signal sequences of human apolipoproteins. These peptides selectively partitioned into the plasma membrane of BSF trypanosomes, resulting in an increase in the rigidity of the bilayer, dramatic changes in cell motility, and subsequent cell death. No killing of the developmental stage found within the insect midgut, the procyclic form, was observed. Additionally, the peptides exhibited no toxicity toward mammalian cell lines and did not induce hemolysis. Studies with model liposomes indicated that bilayer fluidity dictates the susceptibility of membranes to manipulation by hydrophobic peptides. We suggest that the composition of the BSF trypanosome cell membrane confers a high degree of fluidity and unique susceptibility to killing by hydrophobic peptides and is therefore a target for the development of trypanocidal drugs.