Project description:ATM (ataxia telangiectasia mutated) kinase is crucial to a wide range of human developmental disorders and adult/pediatric malignancies. Its mutations are causally tied to ataxia telangiectasia, a multi-systemic congenital disorder mainly affecting brain and blood systems. We generated 4 separate ATM-knockout human pluripotent stem cell lines and differentiated them to form 3-dimensional brain cortical brain organoids. Brain cortical organoids are an excellent model of human developing cortex. Using these analyses, we identified ATM-dependent phosphorylation predominantly influences factors in neurogenesis, neuronal differentiation, cell morphogenesis, and microtubule cytoskeleton as well as kinases involved in ATM, BNDF, and WNT signaling, G2/M checkpoint, and p53 regulation. These findings have broad implications about diseases associated with ATM, including ataxia telangiectasia.
Project description:Bulk ATAC-seq was performed on human, chimpanzee, bonobo, and macaque stem cell-derived cerebral organoids. ATAC-seq was performed on day 60 (2 months old) and day 120 (4 months old) cerebral organoids.
Project description:The human brain has changed dramatically from other primate species, but the genetic and developmental mechanisms behind the differences remains unclear. Here we used single cell RNA sequencing based on 10X technology to explore temporal transcriptomic dynamics and cellular heterogeneity in cerebral organoids derived from human and non-human primates chimpanzee and rhesus macaque stem cells. Using cerebral organoids as a proxy of early brain development, we detect a delayed pace of human brain development relative to the other two primate species. Additional human-specific gene expression patterns resolved to different cell states through progenitors to neurons are also found. Our data provide a transcriptomic cell atlas of primate early brain development, and illustrate features that are unique to humans.
Project description:Human embryonic stem cells (WA01) were differentiated in a step-wise manner into three-dimensional human gastric organoids (hGOs). At day 34 of differentiation, the hGOs were collected and analyzed by RNA-sequencing.
Project description:Here we used human cortical brain organoids to probe the longitudinal impact of GSK3 inhibition through multiple developmental stages. Chronic GSK3 inhibition increased the proliferation of neural progenitors and caused massive derangement of cortical tissue architecture. Cortical organoids were differentiated as previously described (Paşca et al., 2015, doi: 10.1038/nmeth.3415.).Chronic GSK3 inhibition was performed by adding CHIR99021 (Merck SML1046) to the medium at day 0 (1 microM) and kept throughout the differentiation process until reaching the respective collection timepoints (day 18, day 50, day 100).
Project description:We aimed to investigate transcriptional changes in human colon cancer organoids with the BRAF-V600E mutation and in human colon cancer organoids in which the BRAF-V600E mutation was corrected by means of CRISPR genome editing. RNAseq was performed at USEQ at the UMC Utrecht (The Netherlands).
Project description:Single cell ATAC-seq (scATAC-seq) was performed at various stages of differentiation of human pluripotent stem cells to 4 month old cerebral organoids. scATAC-seq was performed on the following days of differentiation: day 0 (pluripotent stem cell), day 4 (embryoid body), day 10 (neuroectoderm), day 15 (neuroepithelium), day 30 (1 month old cerebral organoid), day 60 (2 months old cerebral organoid), and day 120 (4 months old cerebral organoid).
Project description:Human induced pluripotent stem cell-derived kidney organoids have potential for disease modelling and regenerative medicine purposes. However, they lack a functional vasculature and remain immature in in vitro culture. Here, we transplanted kidney organoids at day 7+12 of differentiation in the coelomic cavity of chicken embryos and then compared them to their respective untransplanted controls at d7+13 and d7+20 using scRNAseq and imaging modalities. We demonstrate vascularization and enhanced maturation of transplanted kidney organoids.
Project description:The purpose of this study was to characterise iPSC-derived human intestinal epithelial organoids (iPSCo) by comparing these cultures with primary purified intestinal epithelial cells (IEC). Intestinal epithelial organoid (IEO) cultures were derived from at least three different lines of iPSCs, RNA was extracted and gene expression was profiled using RNA-sequencing. We compared these profiles with datasets we have previously derived from purified IEC from mature terminal ileum (TI) and sigmoid colon (SC) as well as human fetal proximal gut (FPG) and fetal distal gut (FDG).
Project description:To study how methanol fixation affects single-cell transcriptomic measurement, two cerebral organoids were dissociated. Cell suspension of each organoid was split into two aliquots. Methanol fixation was applied to one of the two aliquots. Single-cell RNA-seq with 10x Genomics was applied to the two aliquots separately.