Project description:The purpose of this study was to characterise iPSC-derived human intestinal epithelial organoids (iPSCo) by comparing these cultures with primary purified intestinal epithelial cells (IEC). Intestinal epithelial organoid (IEO) cultures were derived from at least three different lines of iPSCs, RNA was extracted and gene expression was profiled using RNA-sequencing. We compared these profiles with datasets we have previously derived from purified IEC from mature terminal ileum (TI) and sigmoid colon (SC) as well as human fetal proximal gut (FPG) and fetal distal gut (FDG).
Project description:Ribosome profiling (Ribo-Seq) (maps positions of translating ribosomes on the transcriptome) and RNA-Seq (quantifies the transcriptome) analysis of African green monkey (Vero E6) cells and Aedes albopictus (C6/36) cells infected with Zika Virus (ZIKV) strain PE243. Cells were harvested at 24 h post infection (p.i.) and Ribo-Seq and RNA-Seq libraries were prepared and deep sequenced.
Project description:ATM (ataxia telangiectasia mutated) kinase is crucial to a wide range of human developmental disorders and adult/pediatric malignancies. Its mutations are causally tied to ataxia telangiectasia, a multi-systemic congenital disorder mainly affecting brain and blood systems. We generated 4 separate ATM-knockout human pluripotent stem cell lines and differentiated them to form 3-dimensional brain cortical brain organoids. Brain cortical organoids are an excellent model of human developing cortex. Using these analyses, we identified ATM-dependent phosphorylation predominantly influences factors in neurogenesis, neuronal differentiation, cell morphogenesis, and microtubule cytoskeleton as well as kinases involved in ATM, BNDF, and WNT signaling, G2/M checkpoint, and p53 regulation. These findings have broad implications about diseases associated with ATM, including ataxia telangiectasia.
Project description:The human brain has changed dramatically from other primate species, but the genetic and developmental mechanisms behind the differences remains unclear. Here we used single cell RNA sequencing based on 10X technology to explore temporal transcriptomic dynamics and cellular heterogeneity in cerebral organoids derived from human and non-human primates chimpanzee and rhesus macaque stem cells. Using cerebral organoids as a proxy of early brain development, we detect a delayed pace of human brain development relative to the other two primate species. Additional human-specific gene expression patterns resolved to different cell states through progenitors to neurons are also found. Our data provide a transcriptomic cell atlas of primate early brain development, and illustrate features that are unique to humans.
Project description:Human embryonic stem cells (WA01) were differentiated in a step-wise manner into three-dimensional human gastric organoids (hGOs). At day 34 of differentiation, the hGOs were collected and analyzed by RNA-sequencing.
Project description:Single cell ATAC-seq (scATAC-seq) was performed at various stages of differentiation of human pluripotent stem cells to 4 month old cerebral organoids. scATAC-seq was performed on the following days of differentiation: day 0 (pluripotent stem cell), day 4 (embryoid body), day 10 (neuroectoderm), day 15 (neuroepithelium), day 30 (1 month old cerebral organoid), day 60 (2 months old cerebral organoid), and day 120 (4 months old cerebral organoid).
Project description:To better understand the critical drivers of Zika virus pathogenicity, we used microarray analysis to evaluate the host responses triggered by Zika virus infection in MRC-5 cells.
Project description:Bulk ATAC-seq was performed on human, chimpanzee, bonobo, and macaque stem cell-derived cerebral organoids. ATAC-seq was performed on day 60 (2 months old) and day 120 (4 months old) cerebral organoids.
Project description:RNA-seq count data at 3 timepoints was generated for Zika-exposed and Zika-naïve individuals in order to assess associated signatures
Project description:Here we used human cortical brain organoids to probe the longitudinal impact of GSK3 inhibition through multiple developmental stages. Chronic GSK3 inhibition increased the proliferation of neural progenitors and caused massive derangement of cortical tissue architecture. Cortical organoids were differentiated as previously described (Paşca et al., 2015, doi: 10.1038/nmeth.3415.).Chronic GSK3 inhibition was performed by adding CHIR99021 (Merck SML1046) to the medium at day 0 (1 microM) and kept throughout the differentiation process until reaching the respective collection timepoints (day 18, day 50, day 100).