Pathways regulated by oncogenic PTEN/PI3K/AKT signalling in NSCLC
Ontology highlight
ABSTRACT: Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. For each sample, 500 ng of total RNA were used to synthesize biotinylated cRNA with Illumina RNA Amplification Kit (Ambion, Austin, TX). Synthesis was carried out according to the manufacturersâ instructions. From each sample, technical triplicates were produced and 750 ng cRNA were hybridized for 18h to Human HT-12_V3_0_R1 Expression BeadChips (Illumina, San Diego, CA). Hybridized chips were washed and stained with streptavidin-conjugated Cy3 (GE Healthcare, Milan, Italy). BeadChips were dried and scanned with an Illumina Bead Array Reader (Illumina).
ORGANISM(S): Homo sapiens
SUBMITTER: Carmelo Laudanna
PROVIDER: E-MTAB-5286 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA