RNA-seq of retinal organoids derived from RPGR patient-, control- and mutation-corrected-iPSC at different developmental stages
Ontology highlight
ABSTRACT: Retinitis pigmentosa (RP) is an irreversible and inherited retinopathy. RPGR mutations are the most common causes of this disease. It remains challenging to decipher the mechanism of RPGR mutation because of the lack of appropriate study models. The substitution of patient-specific diseased retina without ethical restrictions is desired and iPSC-derived 3D retina is the best choice. In our experiment, we generated iPSCs from one RP patient with 2-bp frameshift mutation in the exon14 of RPGR gene, which were differentiated into retinal organoids. Also we generated iPSCs from a normal control and differentiated those control-iPSCs into healthy retinal organoids. Samples of patient- and control-retinal organoids at W0, W7, W13 (two replicates), W18 (two replicates) and W22 (two replicates for patient) were collected for RNA-seq. Corrected-iPSC were derived from CRISPR/Cas9-mediated gene correction. Then we collected the corrected-iPSC derived retinal organoids at W0, W7, W13 (two replicates), W18 (two replicates) and W22 (two replicates) for RNA-seq. Through the RNA-seq data, we demonstrate that patient-specific iPSC-dervied 3D retinae can recapitulate disease progress of Retinitis Pigmentosa through presenting defects in photoreceptors' gene profile. CRISPR/Cas9-mediated gene correction can rescue photoreceptor gene profile. Those transcriptome are consistent with the phenotype and function.
INSTRUMENT(S): Illumina HiSeq 2500
ORGANISM(S): Homo sapiens
SUBMITTER: Wen-Li Deng
PROVIDER: E-MTAB-6490 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA