Project description:Transcriptome profiling of three developmental stages of immature male gametophyte intobacco (Nicotiana tabacum) Total RNA isolated from tobacco microspores and early and late bicellular pollen was hybridised on Agilent Tobacco Gene Expression Microarray 4x44K in two biological replicates per sample
Project description:We used tomato pollen in order to identify pollen stage-specific small non-coding RNAs (sncRNAs) and their target mRNAs. We further deployed elevated temperatures to discern stress responsive sncRNAs. For this purpose high throughput sncRNA-sequencing was performed for three-replicated sncRNAs libraries derived from tomato tetrad, post-meiotic, and mature pollen under control and heat stress conditions.
Project description:We created a triple loss-of-function/knockout mutant targeting three rice genes simultaneously. The three selected genes are as follows: OsADF1 (LOC_Os02g44470), OsADF6 (LOC_Os04g46910), and OsADF9 (LOC_Os07g30090). These three ADFs are strongly transcriptional expressed in the rice mature anthers (stages 13) and bi-/tricelluler pollen. The triple mutant of these OsADFs does not produce self-fertilizing seeds due to the short length of the pollen tube (male-sterile). This data is about mature anther transcriptome data about the triple mutant of OsADFs (ADFmT). We sampled mature anther for the analysis.
Project description:Small RNA diversity and function has been widely characterized in various tissues of the sporophytic generation of the angiosperm model Arabidopsis thaliana. In contrast, there is limited knowledge about small RNA diversity and their roles in developing male gametophytes. We thus carried out small RNA sequencing on RNA isolated from four stages of developing Arabidopsis thaliana pollen. Spores from 4 stages of pollen development (UNM: Uninucleate microspore M-bM-^@M-^S BCP: Bicellular pollen M-bM-^@M-^S TCP: Tricellular pollen M-bM-^@M-^S MP: Mature pollen) were isolated using a percoll gradient-based method (Honys and Twell, 2004) and the small RNA fraction for each sample was isolated and sequenced by Illumina technology. Reference: Honys, D. and Twell, D. (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 5/11/R85.
Project description:The expression analysis had two goals: (1) look at relative transcription within mature pollen grains (2) compare expression in the stigma during pollination with either compatible or in-compatible pollen. Two pairwise comparisons, (i) unpollinated stigma vs. stigma pollinated with compatible pollen, and (ii) unpollinated stigma vs stigma pollinated with incompatible pollen. The genotype where stigma samples were harvested from is F1-30, and this is also the pollen source during an incompatible pollination reaction. The compatible pollen source is the variety Foxtrot (heterogeneous populations).
Project description:Pollen tube growth is essential for successful fertilization and stable crop yields. We constructed loss-of-function/knock-out mutants that simultaneously target two rice genes using the CRISPR/Cas9 mutagenesis system. The selected OsRALF17 and OsRALF19 genes are strongly expressed in rice bicellular/tricellular pollen and have essential functions in the pollen tube growth. For the corresponding transcriptomic analysis, we sampled mature pollen anthers from a control group and an OsRALF17/19 knock-out mutant.
Project description:The haploid multicellular male gametophyte of plants, the pollen grain, is a terminally differentiated structure whose function ends at fertilization. Unlike pollen grains, the immature gametophyte retains its capacity for totipotent growth when cultured in vitro. Haploid embryo production from cultured immature male gametophytes is a widely used plant breeding and propagation technique that was described nearly 50 years ago, but one that is poorly understood at the mechanistic level. Using a chemical approach, we show that the switch to haploid embryogenesis is controlled by the activity of histone deacetylases (HDACs). Blocking HDAC activity with trichostatin A (TSA) in cultured immature male gametophytes of Brassica napus leads to a large increase in the proportion of cells that switch from pollen to embryogenic growth. Embryogenic growth is enhanced by, but not dependent on, the high temperature stress that is normally used to induce haploid embryogenesis in B. napus. The immature male gametophyte of Arabidopsis thaliana, which is recalcitrant for haploid embryo development in culture, also forms embryogenic cell clusters after TSA treatment. TSA treatment of immature male gametophytes for as little as eight hours was accompanied by hyperacetylation of histones H3 and H4, and by the upregulation of genes involved in cell-cycle progression, the auxin pathway and cell wall catabolism pathways. We propose that the totipotency of the immature male gametophyte in planta is kept in check by an HDAC-dependent mechanism, and that high temperature or other stresses used to induce haploid embryo development in culture impinge on this HDAC-dependent pathway. 8 samples were analyzed. We generated the following pairwise comparisons between treatment and the corresponding mock treatment: TSA+CHX (2 replicates) vs CHX (2 replicates); TSA (2 replicates) vs DMSO (2 replicates).
Project description:We compared genetic profiles of planktonic stage to biofilm stage of deep sea bacterium Pseudoalteromonas sp. SM9913 and revealed genetic features during switch from planktonic to pellicle stage in Pseudoalteromonas sp. SM9913. mRNA profiles of Pseudoalteromonas sp. SM9913 planktonic cells, initial pellicle cells and mature pellicle cells were generated by Illumina Hiseq2000.
Project description:We created a double loss-of-function/knockout mutant targeting two rice genes simultaneously. The selected genes are as follows: OsCNGC4(LOC_Os03g44440) and OsCNGC5(LOC_Os12g28260). These two CNGCs are strongly transcriptional expressed in the rice mature anthers (stages 13-14). The mutant of these OsCNGC4/5 displayed a low seed-setting rate. This data refers to the transcriptome of mature anthers from the double mutant of OsCNGC4 and OsCNGC5. We sampled mature anther for the analysis.