Project description:Pre-mRNA splicing relies on the still poorly understood dynamic interplay between more than 150 protein components of the Spliceosome, and the steps at which splicing can be regulated remain largely unknown. Here we systematically analyze the effect of knocking down the components of the splicing machinery on alternative splicing events relevant for cell proliferation and apoptosis and use this information to reconstruct a network of functional interactions. The network accurately captures well-established physical and functional associations and identifies new, revealing remarkable regulatory potential of core spliceosomal components, related to the order and duration of their recruitment during Spliceosome assembly. In contrast with standard models of regulation at early events of splice site recognition, factors involved in catalytic activation of the Spliceosome display regulatory properties. The network also sheds light on the antagonism between hnRNP C and U2AF and on targets of anti-tumor drugs, and can be widely used to identify mechanisms of splicing regulation. RNA from 3 biological replicates of 72 hours knockdowns of human IK or SMU1 and a control set were used. Changes between the control and knockdowns were measured based on using a splice-junction array (Affymetrix HJAY).
Project description:Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. However, the contribution of AS to the control of embryonic stem cell (ESC) pluripotency is not well understood. Here, we identify an evolutionarily conserved ESC-specific AS event that changes the DNA binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency including OCT4, NANOG, NR5A2 and GDF3, while concomitantly repressing genes required for ESC differentiation. Remarkably, this isoform also promotes the maintenance of ESC pluripotency and the efficient reprogramming of somatic cells to induced pluripotent stem cells. These results thus reveal that an AS switch plays a pivotal role in the regulation of pluripotency and functions by controlling critical ESC-specific transcriptional programs. Exons 18 and 18b form a mutually exclusive splicing event. The FOXP1 (non-ES) isoform contains only exon 18 and not 18b, while the FOXP1-ES isoform contains only exon 18b and not 18. To investigate whether FOXP1 and FOXP1-ES control different sets of genes, we performed knockdowns using custom siRNA pools targeting FOXP1 exons 18 or 18b in undifferentiated H9 cells, followed by RNA-Seq profiling.
Project description:PTBP1 and PTBP2 control alternative splicing programs during neuronal development, but the cellular functions of most PTBP1/2-regulated isoforms remain unknown. We show that PTBP1 guides developmental gene expression by regulating the transcription factor Pbx1. We identify exons that are differentially spliced when mouse embryonic stem cells (ESCs) differentiate into neuronal progenitor cells (NPCs) and neurons, and transition from PTBP1 to PTBP2 expression. We define those exons controlled by PTBP1 in ESCs and NPCs by RNA-seq analysis after PTBP1 depletion and PTBP1 crosslinking-immunoprecipitation. We find that PTBP1 represses Pbx1 exon 7 and the expression of its neuronal isoform Pbx1a in ESC. Using CRISPR-Cas9 to delete regulatory elements for exon 7, we induce Pbx1a expression in ESCs, finding that this activates transcription of specific neuronal genes including known Pbx1 targets. Thus PTBP1 controls the activity of Pbx1 and suppresses its neuronal transcriptional program prior to differentiation. 46C mESCs were treated with 20 nM control, Ptbp1, Ptbp2, or Ptbp1 and Ptbp2 siRNAs for 72 hours. The knockdowns were performed using 2 independent sets of siRNAs, including one biological replicate. Poly-A RNA was isolated for RNA-sequencing and splicing analyses.
Project description:To systematically explore the functions of core splicing factors and regulators in alternative splicing, RNA-seq analyses were carried out upon the knockdown of over 305 splicing-related factors.
Project description:To gain global insights into the role of the well-known repressive splicing regulator PTB we analyzed the consequences of PTB knockdown in HeLa cells using high-density oliogonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB repressed and activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons, but downstream of activated exons. The N-terminal half of PTB was sufficient to activate splicing when recruited downstream of a PTB-activated exon. Moreover, insertion of an upstream pyrimidine tract was sufficient to convert a PTBactivated to a PTB-repressed exon. Our results demonstrate that PTB, an archetypal splicing repressor, has variable splicing activity that predictably depends upon its binding location with respect to target exons. Target was prepared from 3 biological replicates of PTB/nPTB knockdown and 3 control mock knockdowns from HeLa S3 cell line and hybridized to a custom Affymetrix array containing exon and exon-junction probes for more than 30,000 human genes
Project description:To gain global insights into the role of the well-known repressive splicing regulator PTB we analyzed the consequences of PTB knockdown in HeLa cells using high-density oliogonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB repressed and activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons, but downstream of activated exons. The N-terminal half of PTB was sufficient to activate splicing when recruited downstream of a PTB-activated exon. Moreover, insertion of an upstream pyrimidine tract was sufficient to convert a PTBactivated to a PTB-repressed exon. Our results demonstrate that PTB, an archetypal splicing repressor, has variable splicing activity that predictably depends upon its binding location with respect to target exons. Target was prepared from 6 biological replicates of PTB/nPTB knockdown and 6 control mock knockdowns from HeLa S3 cell line and hybridized to the Affymetrix Human Exon 1.0 ST Array. Two groups of three replicates each were collected at two different times.
Project description:Splicing of pre-mRNAs results in the deposition of the exon junction complex (EJC) upstream of exon-exon boundaries. The EJC plays crucial post-splicing roles in export, translation, localization and nonsense-mediated decay of mRNAs. It also aids faithful splicing of pre-mRNAs containing large introns, albeit via an unknown mechanism. Here, we show that the core EJC plus the accessory factors RnpS1 and Acinus aid in definition and efficient splicing of neighboring introns. This requires prior deposition of the EJC in close proximity either from an upstream or downstream splicing event. If present in isolation, EJC-dependent introns are splicing-defective also in wildtype cells. Interestingly, the most affected intron belongs to the piwi locus, which explains the reported transposon de-silencing in EJC-depleted Drosophila ovaries. We propose that the dependency of splicing on the EJC is exploited as a means to control the temporal order of splicing events. Our observations provide a powerful basis to dissect the molecular events that underlie the role of the EJC in splicing. Analysis of splicing defects in 3 knockdowns (siGFP [control], siACN, siTSU) in Drosohpila OSCs. PolyA RNA (biological duplicates) and total-RNA was sequenced on a Illumina HiSeq2000 in PE50 mode.
Project description:PTBP1 and PTBP2 control alternative splicing programs during neuronal development, but the cellular functions of most PTBP1/2-regulated isoforms remain unknown. We show that PTBP1 guides developmental gene expression by regulating the transcription factor Pbx1. We identify exons that are differentially spliced when mouse embryonic stem cells (ESCs) differentiate into neuronal progenitor cells (NPCs) and neurons, and transition from PTBP1 to PTBP2 expression. We define those exons controlled by PTBP1 in ESCs and NPCs by RNA-seq analysis after PTBP1 depletion and PTBP1 crosslinking-immunoprecipitation. We find that PTBP1 represses Pbx1 exon 7 and the expression of its neuronal isoform Pbx1a in ESC. Using CRISPR-Cas9 to delete regulatory elements for exon 7, we induce Pbx1a expression in ESCs, finding that this activates transcription of specific neuronal genes including known Pbx1 targets. Thus PTBP1 controls the activity of Pbx1 and suppresses its neuronal transcriptional program prior to differentiation. 46C mESCs were differentiated in mNPCs. The mNPCs were treated with 10 nM control, Ptbp1, Ptbp2, or Ptbp1 and Ptbp2 siRNAs for 48 hours. The knockdowns were performed using 2 independent sets of siRNAs. Poly-A RNA was isolated for RNA-sequencing and splicing analyses.
Project description:To study the involvement of key Areg (CD142+ ASPC)-specifics factors in the inhibitory capacity of CD142+ ASPCs on adipogenesis, we performed transcriptomic profiling of CD142− ASPCs exposed to the secretome of CD142+ ASPCs carrying knockdowns of the indicated genes. CD142− ASPCs were co-cultured and co-differentiated (within the transwell set-up) with CD142+ ASPCs in which siRNA-based knockdowns of specific genes were performed. ASPCs were collected as Lin− (CD31− CD45− TER119−) CD29+ CD34+ SCA1+ cells of the mouse subcutaneous stromal vascular fraction using FACS.
Project description:We performed two independent siRNA mediated knockdowns of Srf (Srf si1 & Srf si2) and an unspecific siRNA (siNon) in mouse cardiomyocytes HL-1 cells. Small RNAs were sequenced by Illumina/Solexa next-generation (single-end) sequencing technology. The sequence reads were mapped to the mouse reference genome (NCBI v37, mm9) using MicroRazerS. MicroRazerS searches for the longest possible prefix-match of each read, i.e. the longest possible contiguous match starting at the first base. Hence, it is robust to possible adapter sequence at the 3' end of a read and requires no adapter trimming. Small RNA-seq profiles of two siRNA mediated knockdowns of Srf and an unspecific siRNA in mouse cardiomyocytes