Physiological, biochemical and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes
Ontology highlight
ABSTRACT: In many potato cultivation regions, production is constrained by abiotic stresses such as drought and high temperatures which are often present in combination. We aimed to identify key mechanisms and processes underlying single and combined abiotic stress tolerance by a comparative analysis of tolerant and susceptible cultivars. Physiological data supported cultivars Desiree and Unica as being abiotic stress tolerant, while Agria and Russett Burbank were stress susceptible. This was indicated by the stronger impact of abiotic stress on photosynthetic carbon assimilation in the susceptible cultivars. Similarly, susceptible cultivars exhibited a lower leaf transpiration rate following stress, particularly combined heat and drought stress. Transcript profiles using microarrays were highly divergent both between genotypes and following the application of stress treatments. However, relatively few transcripts or metabolites exhibited genotype specific responses to abiotic stress treatment. Furthermore, apart from a decrease in the abundance of transcripts associated with PSII, particularly the light harvesting complex in both Desiree and Unica, there were very few changes that were consistent across stress susceptible or stress tolerant genotypes following stress treatment.
ORGANISM(S): Solanum tuberosum
SUBMITTER: Pete Hedley
PROVIDER: E-MTAB-8298 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA