Project description:To provide a snapshot of gene expression for the cancer models distributed by The Jackson Laboratory as assayed using the Affymetrix HU133 platform.
Project description:MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC including the small cell prostate carcinoma (SCPC) variant with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can both arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention. Expression profiling by high throughput sequencing of experimentally generated human tumors with mixed NEPC and prostate adenocarcinoma. Gene expression analysis of laser capture microdissected NEPC and adenocarcinoma from three independent engineered human tumors of mixed NEPC and prostate adenocarcinoma phenotype.
Project description:Determination of differentially expressed genes from peripheral blood of Myelofibrosis patients with JAK2VF and JAK2VF and DNMT3A mutations
Project description:Determination of differentially expressed genes from in vivo hematopoietic stem cell progenitors (LSK) in Jak2VF-emp-Cas9 and Jak2VF-Dnmt3a-Cas9 8 weeks post transplantation.
Project description:A large body of evidence has demonstrated that many human tumors are maintained by a small cell population called cancer stem cells (CSCs) or tumor progenitors, which are responsible for tumor formation, therapy resistance and metastasis. We found that ionizing radiation treatment enriches for the CSC phenotype and properties by preferential survival and expansion of tumor progenitor cells. Our studies revealed that aldehyde dehydrogenase (ALDH) activity is indicative of prostate tumor progenitor cells with increased chemo- and radioresistance, enhanced migratory potential, improved DNA- double strand break repair and activation of the signaling pathways, which promote self-renewal and epithelial-mesenchymal transition. We found that X-ray irradiation can convert the bulk tumor cells to more clonogenic and radioresistant population positive for expression of CSC markers. For the first time we showed that irradiation increases histone H3K4 and H3K36 methylation in prostate cancer cells, thereby reactivating transcription of epigenetically silenced target genes. We showed that radioresistant tumor progenitor population undergoes a phenotypical switching during the course of irradiation, suggesting that controlling the phenotypical and functional properties of CSCs during radiation therapy is ultimative for the optimization of treatment strategies. Our studies have shown that CSC markers may be beneficial in prediction of tumor radiocurability, and combination of irradiation with therapies directed against CSCs can be a useful strategy to improve cancer treatment. To identify potential biomarkers associated with CSC population in these xenograft tumors, we performed whole genome gene expression profiling of the xenograft tumors treated with NVP-BEZ235, which eliminates prostate cancer progenitor populations or with Taxotere, which targets the bulk tumor cells as compared with vehicle-treated control mice. Treatment with either vehicle, Taxotere, NVP-BEZ235, or a combination of these two. There are no replicates