Project description:Cigarette smoke (CS) is the major risk factor for COPD and is linked to cardiopulmonary dysfunction. Exercise training, as part of pulmonary rehabilitation, is recommended for all COPD patients. It has several physiological benefits, but the involved mechanisms remain poorly defined. Here, we employed transcriptomic profiling and examined lung endothelium to investigate novel interactions between exercise and CS on cardiopulmonary alterations. Mice were exposed to 20 weeks of CS, CS + 6 weeks of high-intensity interval training on a treadmill or control. Lung and cardiac (left and right ventricle) tissue were harvested, and RNA-sequencing was performed and validated with RT-qPCR. Immunohistochemistry assessed pulmonary arteriolar changes. Transcriptome analysis between groups revealed 37 significantly regulated genes in the lung, 21 genes in the left ventricle, and 43 genes in the right ventricle (likelihood-ratio test). Validated genes that showed an interaction between exercise and CS included angiotensinogen (p=0.002) and resistin-like alpha (p=0.019) in left ventricle, with prostacyclin synthetase different in pulmonary arterioles (p=0.004). Transcriptomic profiling revealed changes in pulmonary and cardiac tissue following exposure to CS, with exercise training exerting rescue effects. Exercise-regulated genes included angiotensinogen and resistin-like alpha. However, it remains unclear if these represent potential candidate genes or biomarkers involved during pulmonary rehabilitation.
Project description:Whole exome sequencing was performed on set of 48 DNA samples obtained from 16 EGFR mutated NSCLC patients whose tumors progressed following EGFR-TKI treatment. The DNA samples included baseline biopsy, rebiopsy and blood from the same patient. By comparing the variants in rebiopsy tumors and baseline tumors we aim to understand the genomic alterations responsible for the development of EGFR-TKI resistance in NSCLC patients.
Project description:To characterize the transcriptome of primary vascular endothelial cells (ECs) during TNFα-response, we performed total RNA-seq on primary human aortic ECs (HAEC), before and after TNFα (45 min. 10 ng/mL).
Project description:Purpose: The uncommonness of gallbladder cancer in the developed world has contributed to the generally poor understanding of the disease. The development of new and effective treatment has been and continues to be a major public health imperative. Methods: We report mutational and copy number analysis of 44 predominantly early-staged gallbladder tumors and 5-gallbladder cancer cell lines by a combination of directed and whole exome sequencing at an average coverage of 100X and above. Using gallbladder cancer cell lines and xenograft mouse models we performed phospho-proteome array profiling, followed by an in-depth functional characterization. Results: We describe recurrent activating ERBB2 somatic mutation in 6 of 44 gallbladder primary tumors with an overall mutation frequency of 13%, along with KRAS activating mutations in 3 of 44 samples. Consistent with whole exome findings, a phospho-proteomic array profile of 49-tyrosine kinase revealed constitutive phosphorylation of ERBB2 and EGFR that were found to heterodimerize. We demonstrate that treatment with ERBB2-specific, EGFR-specific shRNA or with covalent EGFR family inhibitor BIBW-2992 inhibits transformation, survival, migration, invasion, and tumor forming characteristics of gallbladder cancer cells harboring wild type or KRAS (G13D) but not KRAS (G12V) mutation. Furthermore, we show in vivo reduction in tumor size is paralleled by a reduction in the amounts of phospho-ERK in KRAS (G13D) but not in KRAS (G12V) xenografts, validating the in vitro findings Conclusion: Findings from this study implicate ERBB2 as an important therapeutic target in early stage gallbladder cancer. We also present the first evidence that the presence of KRAS (G12V), but not KRAS (G13D) mutation, may preclude gallbladder cancer patients to respond to anti-EGFR treatment, similar to the clinical algorithm commonly practiced to opt for anti-EGFR treatment in colorectal cancer.
Project description:To understand alterations in gene expression upon plakophilin3 (PKP3) loss, we generated two FBM derived plakophilin3 knockdown clones. One of these clones named shpkp3-2 was used for the experiment. The gene expression profile of shpkp3-2 was compared with the vector control named vec. RNA used for this experiment was obtained from two biological replicates of vec (vec1 and vec2) and shpkp3-2 ( shpkp3-2-1 and shpkp3-2-2 ). RNA from the clones were obtained at separate time points in 2 groups. The first group was vec1 and shpkp3-2-1 and the second group was of clones vec2 and shpkp3-2-2 respectively.
Project description:Tuberculosis (TB) is still a major global health challenge, killing over 1.5 million people each year, and hence, there is a need to identify and develop novel treatments for Mycobacterium tuberculosis (M. tuberculosis). The prevalence of infections caused by nontuberculous mycobacteria (NTM) is also increasing and has overtaken TB cases in the United States and much of the developed world. Mycobacterium abscessus (M. abscessus) is one of the most frequently encountered NTM and is difficult to treat. We describe the use of drug-disease association using a semantic knowledge graph approach combined with machine learning models that has enabled the identification of several molecules for testing anti-mycobacterial activity. We established that niclosamide (M. tuberculosis IC90 2.95 μM; M. abscessus IC90 59.1 μM) and tribromsalan (M. tuberculosis IC90 76.92 μM; M. abscessus IC90 147.4 μM) inhibit M. tuberculosis and M. abscessus in vitro. To investigate the mode of action, we determined the transcriptional response of M. tuberculosis and M. abscessus to both compounds in axenic log phase, demonstrating a broad effect on gene expression that differed from known M. tuberculosis inhibitors. Both compounds elicited transcriptional responses indicative of respiratory pathway stress and the dysregulation of fatty acid metabolism. Further testing against drug-resistant isolates and other NTM is warranted to clarify the usefulness of these repurposed drugs for mycobacteria.
Project description:The aim of this experiment was to assess the on- and off-target effects of MAPT-AS1 expression, and whether mutations/deletions to MAPT-AS1 alter these effects. SHSY5Y cells stably expressing variants of MAPT-AS1 were analyzed by Riboseq and Quantseq.